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Abstract—A daily task of malware analysts is the extraction
of behaviors from malicious binaries. Such behaviors include
domain generation algorithms, cryptographic algorithms or dein-
stallation routines. Ideally, this tedious task should be automated.
So far scientific solutions have not gotten beyond proof-of-
concepts. Malware analysts continue to reimplement behaviors
of interest manually. However, often times they merely translate
the malicious binary assembler code to a higher-level language.
This yields to poorly readable and undocumented code whose
correctness is not ensured. Furthermore, the current process that
malware analysts are following leads to a suboptimal focusing
since they deal with too much binary code at once. In this
paper, we aim at overcoming these shortcomings by improving
the malware analysis process regarding the reimplementation of
malicious behaviors. We achieve this by integrating Behavior-
Driven Development in the malware analysis process. We explain
in detail how the integration of Behavior-Driven Development into
the malware analysis process can be done. In a case study on the
highly obfuscated malware Nymaim, we show the feasibility of
our approach.

I. INTRODUCTION

In 2015, profound malware analysis continues to be a
highly manual task. Cyber criminals employ, for example, code
obfuscation or anti-debugging techniques just with the objec-
tive of stealing malware analysts’ precious time. Even though
the research community keeps working hard on these prob-
lems, many promising approaches never reach marketability or
are never released publicly. Take for example the extraction of
behaviors from malicious binaries. Kolbitsch et al. proposed
a system that extract behaviors automatically. Their system,
however, was never publicly shared with the malware research
community. Furthermore, there existed several limitations such
as multi-threading or obfuscation that restrict this approach
to some malware families. To overcome these limitations
one would have to stitch their system together with other
approaches that, for example, deobfuscate malicious binaries.
To solve this problem in practice, a tremendous engineering
effort would be necessary. But still there are open questions
like how to detect zero-day anti-analysis techniques and how
to circumvent them automatically?

However, each day malware analysts are facing the reim-
plementation task, i.e. reimplementing the underlying algo-
rithms of a malicious behavior. For example, this could be a
domain generation algorithm (DGA) in order to anticipate fu-
ture domain names or this could be a cryptographic algorithm

in order to decrypt automatically configuration files of a mal-
ware family. Since the aforementioned scientific approaches
are rather proof-of-concepts, practitioners are extracting al-
gorithms from malicious software still manually. Often times
they are merely translating from the binary’s assembler code
to a higher-level language. This leads to several problems.
Among these problems are incorrect, poorly readable and
undocumented code. Depending on further usage of extracted
behaviors, these problems might lead to trouble among the
team or even waste of money in case incorrect DGAs are used
for automatically registering domains. Furthermore, the sheer
mass of binary code that belongs to a typical behavior yields to
a suboptimal focusing on too much code at once. We believe
that malware analysts could be more efficient when using an
improved process for tackling the reimplementation task.

In this paper, we aim at overcoming these problems by
integrating Behavior-Driven Development into the malware
analysis process. Our approach improves the way malware
analysts tackle the reimplementation task. We achieve this
by combining malware analysis with a testing-driven process.
Rigorous testing is a fundamental part of today’s software
development processes. Many industrial case studies (e.g. [1]
or [2]) state that testing-driven processes come with a lot
of benefits such as a significantly reduced defect rate. By
enhancing malware analysis with a testing-driven process,
we overcome the aforementioned shortcomings of the current
state of the practice such as incorrect or complex code. We
chose Behavior-Driven Development (BDD) as testing process.
Since this process, allows malware analysts to describe their
observations in natural language. Furthermore, BDD rests on
the Hoare logic that is used for proofing (partial) correctness of
programs. This gives it a profound theoretic background. We
show the feasibility of our approach in a detailed case study
on the highly obfuscated malware family Nymaim. In this case
study, we reimplement Nymaim’s DGA with the help of BDD.

To summarize our contributions:

• BDD in Malware Analysis. We present a novel
approach for tackling the reimplementation task by
applying Behavior-Driven Development to malware
analysis. This ensures correct (i.d. according to the
system specification of the malware sample at hand),
readable and documented code. Furthermore, it aids
the reverse engineer in focusing on one piece of code
at a time.

• Case Study on Nymaim. We show the feasibility of
our process in a case study on the heavily obfuscated
malware family Nymaim. We reimplemented its do-
main generation algorithm.
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II. REIMPLEMENTATION TASK

Malware analysts facing frequently the task of extracting
behaviors from malware samples. There are already solutions
to this problem (e.g. [3] or [4]). However, these solutions fail
to work in practice because of, for example, heavy obfuscation.
While the research community is still working on these prob-
lems, practitioners have to deal with them each day. Since au-
tomatic extraction systems are still not applicable to real world
malware, practitioners continue to analyze these behaviors of
interest by hand and reimplement them in high-level languages
like Python. In the following, we refer to this process as the
reimplementation task. By reimplementation task, we mean the
process of analyzing (malicious) binary code, understanding
this code and delivering a reimplementation in a high-level
programming language that works according to the system
specification given by the binary.

In contrary to traditional software development where the
customer provides the requirements, analysts have to derive
the requirements from the malware sample by themselves. This
means that the system specifications are entirely dictated by
the malware sample at hand. As a consequence, care has to
be taken such that bugs and non-standard behavior are also
considered in the reimplementation.

Often times analysts just translate the behavior from assem-
bly into another higher-level language. However, this leads to
several problems. First, the code’s functionality is not ensured.
There are typically no tests that proof the code to work at least
for some cases. This can have several consequences such as
wrong reimplementations or non-confident malware analysts.
Second, the code’s readability is poor. Merely decompiling the
compilation of a binary compiler yields to a totally different
code structure that often times is not that elegant. This is com-
parable to translating with Google Translate (cf. Appendix A).
Third, the code is not documented. Colleagues or third parties
sometimes have to reverse engineer the reimplemented code
in order to understand its meaning. Fourth, as a consequence
of merely translating code from one language to another, it
is not ensured that the underlying semantics of the code are
100% clear to the analyst (cf. Appendix A). Understanding of
the code can, for example, lead to the detection of exploitable
bugs. As a result of these four points, other colleagues or even
third parties might run into problems when working with such
a reimplementation.

This leads us to the problem that we are tackling in this
paper: the current process how malware analysts reimplement
behaviors found in malicous binaries. We think that a new
process has to meet the following requirements: First, the solu-
tion should enable analysts to describe concisely and naturally
what they observe. Hence, a description in natural language
is required. The intuition here is that explaining observations
in natural language forces the analyst to reflect them and it
leads to a better understanding. Furthermore, this description
in natural language serves as a documentation for colleagues
or third parties. Second, the solution should continuously
ensure that the code works. Therefore, it must be tested.
Feedback loops should be very short and malware analysts
should be confident that their code is working continuously.
Third, the code should be concise and readable. This requires
frequent refactorings of the code. Since we demand a suit
of comprehensive tests, malware analysts do not have to fear

refactorings. Unintended semantic changes that are introduced
to the code at this stage would be directly detected due to
the tests. Fourth, the process should improve the focusing of
malware analysts by fading out regions of a behavior that
are not important for the reimplementation of a submodule.
All these requirements can be fulfilled when using a *-driven
development process. In the next section, we discuss these
processes in detail.

III. *-DRIVEN-DEVELOPMENT

In this section, we discuss software testing processes. At
first, we have a look at Software Testing in general. This
is followed by a discussion of two development processes
that incorporate testing as core feature. The first process is
Test-Driven Development (TDD) and the second process is
Behavior-Driven Development (BDD).

A. Software Testing

The main objective of software testing is to test a software’s
functionally. It allows to find defects and failures. However,
the input space is at least very large, if not infinite. In fact,
the detection of all possible runtime errors of a software is
undecidable. This can be proven by a reduction to the halting
problem [5]. In addition to testing the functionality, non-
functional requirements of a software can be tested. These
include performance, scalability, usability and reliability.

However, problems arise when software testing is done
infrequently. For example, in the waterfall model [6] test-
ing/verification is a separate step after writing the software’s
code. In case the testing phase is not successful, the code has to
be fixed in order to pass the tests. This leads to long debugging
sessions of code that might have been written a couple of
weeks ago.

B. Test-Driven Development

The consequence of the aforementioned problem was that
software testing was integrated into the development process
[7]. The main idea was writing a test first and then writing
productive code in order to pass this test. From this idea the
rule of three emerged: writing a test, making this test pass and
refactoring the code. These steps are repeated until the software
is implemented. This process comes with a lot of benefits,
even though it might see tedious at first. These benefits include
continuously working code, fast detection of bugs and no fear
of refactorings.

Test are written in the form of unit tests. They test
individual units of the software that might only be part of
a certain behavior. The following listing in Python shows two
simple unit tests of Python lists.

import u n i t t e s t

c l a s s T e s t L i s t M e t h o d s ( u n i t t e s t . T e s t C a s e ) :

def t e s t e m p t y l i s t h a s n o e l e m e n t ( s e l f ) :
s e l f . a s s e r t E q u a l ( l e n ( [ ] ) , 0 )

def t e s t l i s t w i t h o n e e l e m e n t ( s e l f ) :
s e l f . a s s e r t E q u a l ( l e n ( [ 1 ] ) , 1 )
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Fig. 1: Overview of the BDD process applied to malware
analysis.

These two tests test two fundamental characteristics of Python
lists. The first test checks if the empty list does not contain
any element. The second test tests if a list with one element
has the length of one.

C. Behavior-Driven Development

Behavior-Driven Development (BDD) was introduced by
North in 2006 [8]. BDD uses a domain specific language
(DSL) in order to describe the behavior under test. It is
furthermore strictly based on Hoare logic [9]. This logic allows
to proof (partial) correctness of programs. The fundamental
entity of this logic is the Hoare triple {P} C {Q}, where
P and Q are assertions and C is a command. P is called
precondition and Q postcondition. It is possible to describe
the change of a computer program with such a Hoare triple.
Given the precondition P, when command C is executed, then
the postcondition Q should hold. Furthermore, the Hoare logic
introduces axioms and inference rules for proofing (partial)
correctness. However, these constructs are not used in common
BDD frameworks like Cucumber [10] or Behave [11].

Developers state tests in the form of Hoare triples. The
basic skeleton of a test is given by the three key words Given
(precondition P ), When (command C) and Then (postcondi-
tion Q). In the following, we list an example of a behavior –
here termed scenario – of a coffee maker. If customers choose
to add sugar to their coffee, then the coffee maker should add
sugar to the coffee.

S c e n a r i o : C of f e e maker can add s u g a r t o c o f f e e
Given c u s t o m e r chose s u g a r
When c u s t o m e r p r e s s e s OK b u t t o n
Then c o f f e e maker adds s u g a r t o c o f f e e

IV. BDD IN MALWARE ANALYSIS

This section describes in detail how BDD can be applied
to malware analysis. By applying BDD to malware analysis,
we overcome the problems that analysts face when reimple-
menting malicious behavior (cf. section II).

A. Overview of the Process

In this section, we detail how we enhance malware analysis
with a testing-driven process – Behavior-Driven Development
– in order to overcome limitations such as unreadable or
undocumented code. From a reverse engineering point of view,
our approach is mainly a top-down approach [12]. Our goal

is to dive more and more into the details until the behavior is
reimplemented. Behavior that is yet not known is mimiced with
mock objects [13]. The process consists of an initialization
phase and a cycle of four steps that is traversed repeatedly.
It is similar to the phases of TDD or BDD, however analysts
have to derived the specification from the malware sample by
themselves.

During the initialization phase malware analysts set up their
analysis and development environments. Then they pinpoint
the behavior of interest in the binary, i.e. identifying the
interfaces that mark the entry point and exit points of this
behavior. Once they have set up everything, they enter the
reimplementation phase. Figure 1 gives an overview of the
reimplementation phase. It consists of four individual steps
that are traversed repeatedly. The objective of each pass is
reimplementing one submodule of the behavior of interest at a
time. At first this submodule is observed and its functionality is
analyzed by using the top-down approach. In the second step,
malware analysts reflect on their observations and express them
consistently by writing down a test case in natural language.
Thirdly, they write just enough code in order to pass this test.
For it, they analyze in detail the relevant sections of the binary.
In the fourth step, the code that has just been written for
passing the test is refactored. For example, coding style or
the design are improved. At the end of the fourth step, the
cycle can be left in case the initial end-to-end acceptance test
passes. In the following sections, we detail each phase.

B. Pinpointing the Behavior and Initial Acceptance Test

In this preliminary phase, analysts setup their analysis and
development environment. Then they proceed to search for
the behavior in the binary. There must exist a region in the
binary where this behavior starts, in the following called entry
point S. Also there must exist one or several regions in the
binary that mark the successful or unsuccessful termination of
this behavior. These are termed exit points in the following
and they are denoted by {E0, ...,En}, where n ∈ N. Once S
and {E0, ...,En} are known, an initial end-to-end acceptance
test should be written. This acceptance test passes as soon
as the behavior has been reimplemented. It serves therefore
as a guide during the implementation phase. For this initial
acceptance test, malware analysts have to capture test data.
Since this initial acceptance test should test the behavior as a
black box, they have to capture test data at S and {E0, ...,En}.

For illustration purposes, we assume a decryption routine of
a symmetric cryptographic algorithm. This decryption routine
has one entry point S and one exit point E0. This routine
takes as input a pointer to an encrypted buffer, the size of
the encrypted buffer and outputs a pointer to a buffer that
contains the decrypted data. In order to capture test data, a
malware analyst would set two breakpoints – one at S and one
at E0 – and let the sample run. At each breakpoint, they would
extract the corresponding data. They would use this data then
in their initial acceptance test. Once they have reimplemented
the decryption routine, the reimplementation should be able to
successfully decrypt the encrypted buffer.

1) Example Pinpointing DGAs: Domain generation algo-
rithms (DGAs) are a fallback mechanism in case the original
command and control server has been taken down. In this
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case, the bot generates a set of domains that it tries to contact.
Today, the majority of DGAs is time-based. Hence, the bot has
to get the current time for generating domains. For example,
Windows offers information about the current time via the API
call GetSystemTime. Setting a breakpoint on this function and
following the data flow of the time information might lead to
the beginning of the DGA.

2) Example Pinpointing Command Dispatchers: Per def-
inition, a bot executes commands sent/received by/from its
botmaster [14]. Bots implement typically more than one com-
mand, often times more than ten commands. A command
dispatcher executes the commands issued by the botmaster.
Since the behavior of a bot is defined by the commands it can
execute, finding the command dispatcher and understanding
its individual commands leads to the understanding of the
capabilities of the bot in general.

An easy way of finding a command dispatcher is to follow
the data flow of incoming messages. We assume that com-
munication is done via the network. Therefore, a reasonable
starting point is observing system calls/API calls that are
related to receiving messages from the network. From there
analysts have to follow the data flow of the received data.
Common bots decrypt and verify the network data, parse the
decrypted message and finally execute the received commands.
The decision is taken in the command dispatcher. A tell-
tale sign of a command dispatcher is the usage of a switch
statement.

C. Step 1: Observing the Behavior

Once we have set up the initial end-to-end acceptance test,
we can dive into the details of the behavior of interest. Now we
are entering a cycle that consists of four steps. The first step is
observing a part – in the following termed submodule – of the
behavior of interest. This can be, for example, the key setup of
a cryptographic algorithm. At first, we are interested in getting
a rough overview and also in determining a submodule’s entry
and exit points. Therefore, it is important to use a Top-Down
approach here. A Top-Down approach aims at forming the big
picture of a system. This is achieved by repeatedly breaking
a system down into smaller subsystems until it cannot broken
down further. At first subsystems are treated like a black box.
In later steps these black boxes are opened and broken down
into further subsystems.

D. Step 2: Writing a Test

Once the submodule has been observed, malware analysts
write a test for this submodule. They describe in this test
description what they have observed. The main goal is to
concisely describe what this submodule does. Furthermore, a
corresponding Hoare triple in Given-When-Then-form has to
be stated.

A fundamental part of our approach are mock objects [13].
Mock objects mimic the behavior of real objects such that
they interact with other code in a controlled way. In software
development, mock objects are among other use cases used for
replacing non-existing objects. In our case, these non-existing
objects are submodules that are yet not 100% understood.
Therefore, we simulate these objects with mocks.

Main

Init Amain

A1 A2

Deinit

Fig. 2: Illustration of the Top-Down approach and the usage of
mock objects. When reimplementing submodule A, the main
logic Amain should be reimplemented first. A1 and A2 should
be replaced by mock objects in the meanwhile.

Figure 2 shows the call graph of a simple behavior. The
main logic of the behavior is executed in the main function.
Main calls an init function, another submodule A and a
deinitialization function. Amain represents the main logic of
submodule A. From there two other functions (A1 and A2)
are called. Assume that the next step would be implementing
submodule A. Since we are using a Top-Down approach, we
reimplement at first the main logic Amain of submodule A.
However, Amain depends on A1 and A2. This means that these
two functions have to be replaced by mock objects. We gather
test data at their interfaces and let corresponding mock objects
return this test data.

E. Step 3: Making the Test Pass

Next, malware analysts write just enough code for making
the test pass. In this step, the malware analysts consult the
malicious binary. Since this binary serves as valid system
specification. They can follow the control flow in a debugger in
detail or consult their disassembler and follow multiple control
flows statically. It is import to stay focused during this step and
to just reimplement the code that is needed for passing the test.
Optimizations of the code should not be part of this step, this
can be done in the next step. The main focus is on making
the test pass. Here, the old rule Premature optimization is the
root of all evil should be followed.

F. Step 4: Refactoring the Code

The fourth step ensures the conciseness and readability of
the code. Therefore, analysts refactor their code. Refactoring is
the process of altering the syntax of a software system without
altering its semantics in order to improve its internal structure
[15]. As in the original BDD, it is a mandatory step. Since there
are already tests, bugs that are introduced during this step are
typically found very quickly. This gives analysts the confidence
to rigorously improve their code. Refactoring is a very broad
field. Fowler describes basic refactorings in [15]. The goal
is describing computations in a (more) human readable way.
Therefore, analysts have to reverse the optimizations that were
introduced by compilers or the obfuscations that were intro-
duced by obfuscators. These optimizations include refactoring
inlined code (e.g. memcpy) or inlined loops, represent complex
expression with the help of intermediate results and removing
dead expressions.
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If after this step the initial end-to-end acceptance test
passes, then the behavior of interest has been successfully
reimplemented. If this test still fails, then the analyst has to
do another round of this four step cycle in order to advance
towards the goal.

V. CASE STUDY: NYMAIM

In this case study, we reimplement the DGA of Nymaim
by applying BDD to malware analysis. Nymaim is mainly
a malware dropper with further capabilities such as stealing
passwords or a SOCKS proxy. Originally, it emerged in late
2012. Additionally to packing, Nymaim is highly obfuscated
[16]. Nymaim’s DGA is time-dependent, i.e. each day the
results are different. However, it is deterministic and does not
change in different environments.

A. Environment Setup

We used two Windows VMs as analysis environment. The
first VM was a Windows XP SP3 x86 machine. This VM was
just used during blackboxing. The second VM was a Windows
7 SP1 x86 machine. We used IDA Pro 6.8 as disassembler [17],
Immunity 1.85 as debugger [18] and Mandiant ApateDNS
1.0 for spoofing DNS responses [19]. We reimplemented the
DGA in Python 2.7 [20]. For writing tests, we used the BDD
framework behave [11].

B. Pinpointing the Behavior

We let the sample run in the Windows 7 virtual machine
in order to observe its initial behavior. At first, we noticed
that it resolved google.com. We assumed this to be a typical
connectivity test. Then, the sample resolved some hardcoded
domains. Since the VM was not connected to the Internet, the
sample could not phone home. Immediately afterwards, we
observed how the sample resolved generated domain names
(e.g. yjcmub.info). We reset the VM and changed the date.
We could observe the same behavior. However, the generated
domains were different. We assumed that the underlying DGA
is most probably time-dependent. Executing the sample in the
Windows XP VM with a different system configuration but
with the same date yielded to the same results. Therefore, we
assumed that the algorithm is most likely deterministic.

Given these assumptions, we stated the hypothesis that the
seed for this algorithm must come from a time source like
the Windows API call GetSystemTime or the x86 instruction
RDTSC. First, we set a breakpoint on the API call GetSystem-
Time and let the sample run again. This breakpoint was hit
after the sample contacted its hardcoded domains. From there
we followed the control flow and we were able to pinpoint
algorithm’s exit E0, where 30 generated domains are outputted.
Hence, the input is the SYSTEMTIME structure returned
by GetSystemTime and the output is a list of 30 generated
domains.

We captured in the debugger a valid input/output pair at the
beginning/end of the behavior. Then we used this input/output
pair for a first end-to-end acceptance test. This acceptance
test failed of course at this point in time. But throughout
the reimplementation phase it served as an indicator of task
completion.

F e a t u r e : G e n e r a t e domains t ime−d e p e n d e n t l y
In o r d e r t o have a f a l l b a c k machanism i n c a s e
t h e ha rdcoded domains have been t a k e n down ,
Nymaim s h o u l d be a b l e t o g e n e r a t e domains f o r
e s t a b l i s h i n g a command and c o n t r o l c h a n e l

S c e n a r i o : Nymaim DGA computes domains
Given t h e day i s ”2015−06−12”
When DGA computes domains f o r t h i s d a t e
Then t h e domais f o r t h i s d a t e a r e
| domains |
| d m j d f o t c y . i n |
| yjcmub . i n f o |
| u i i s m p e x r . i n f o |
| r s z s g p z i v i . i n f o |
| p r a t y e q u t g d . ru |
[ . . . ]

C. Entering the Cycle

We had already determined the entry and exit points of the
behavior. In addition, we had an end-to-end acceptance test
for verifying that the behavior is implemented according to
the malware sample’s system specification. Now it was time
to dive into the details. While stepping through the code in
a debugger, we could see that there is an initialization of
the DGA and that there are two other algorithms. The first
algorithm is a pseudo-random number generator (PRNG). The
second algorithm constructs the domains. It does so by drawing
the length L of the domain, then drawing L characters from
the alphabet {a, b, c, ..., z} and finally adding one of five top-
level domains (TLDs). An example of the outcome would be
rszsgpzivi.info. This is actually the main logic of the DGA.

Since we are using a Top-Down approach, the first com-
ponent to be reimplemented is the main logic. As described
above, the main logic consists of three steps. Each step is
targeted individually. Explanatory, we reimplemented the step
where the TLD is chosen. Observing this step yielded to a basic
understanding: this step draws a number from the PRNG and
uses a switch statement for choosing a TLD. We came up with
the following test case:

S c e n a r i o : Nymaim DGA c h o o s e s c o r r e c t
TLD from s e t o f p o s s i b l e TLDs
Given t h e s e e d s
| s eed |
| 78670654 |
| 44370352 |
| 35461477 |
| 97912344 |
When DGA computes TLD
Then t h e TLD i s ru

This yielded to the following python code where the PRNG
and SEEDS are still mock objects.

def computeTld ( s e l f ) :
modulo = 600
t l d = [ ” ru ” , ” n e t ” , ” i n ” , ”com” , ” xyz ” , ” i n f o ” ]
eax = PRNG(SEEDS , modulo )
re turn t l d [ eax ]

The other two steps of the main logic can be implemented
respectively. Next it was time to focus on the PRNG. So
far we had replaced this component with mock objects. We
entered the cycle once more. While observing this component,
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we noticed that it takes as input an integer number that is
used as modulo and four seeds. It outputs an integer in the
closed interval [0, (modulo − 1)]. Care had to be taken since
the PRNG has side-effects on the inputted seeds. The following
listing shows a test for the PRNG.

S c e n a r i o : PRNG works c o r r e c t l y
f o r g i v e n s e e d s and modulo
Given t h e modulo 600
And t h e s e e d s
| s eed |
| 123172080 |
| 79962903 |
| 133504895 |
| 2326822159 |
When PRNG e x e c u t e s
Then t h e o u t p u t i s 1

Once the test had been implemented, we dived into the
details of this component and wrote code to pass it. The
following code passes the test.

def e x e c u t e ( s e l f , s eeds , modulo ) :
a = s e e d s [ 0 ] << 11 ˆ s e e d s [ 0 ]
b = s e e d s [ 3 ] >> 19 ˆ s e e d s [ 3 ]
a = b ˆ a ˆ ( a >> 8)
c = s e e d s [ 2 ]
s e l f . u p d a t e S e e d s ( seeds , a )
re turn ( a + c ) % modulo / 100

Please not that it would be very interesting to have some kind
of smoke test for such a mathematical function. For example,
a naive approach for generating a lot of test data would be
using Ida Pro’s Appcall (cf. Future Work in section VIII).

Since the initial end-to-end acceptance test did not pass
after this iteration, another round of the cycle had to be run
through. The next step would have been implementing the seed
update. However, due to space restrictions, we will skip the
next iterations.

D. Using the Extracted Behavior

Manual searches on the Internet revealed that Nymaim’s
DGA results in a lot of collisions. Because samples from
different years resolved the same domains. We used therefore
the reimplemented DGA in order to estimate how many
collisions this algorithm actually yields to within a ten year
period. Figure 3 shows the total domains generated vs. the
total colliding domains generated by Nymaim’s DGA. A
colliding domain is a domain that is not unique during the
considered period. This figure shows that the DGA generates
around 120.000 domains after 10 years. However, around
100.000 domains are not unique within this ten year period.
Interestingly, collisions occur only after roughly six months.
After six months the collisions steadily increase. The collisions
start only after six months due to the modulos used by the
DGA. Unfortunately, we cannot state whether the developers
of Nymaim aimed at having a lot of collisions in their DGA
or this is just a bug.

E. Discussion

In this case study, we have guided the reader through
the whole process of BDD applied to the malware analysis
process. The outcome is code that is developed according to the

Fig. 3: Nymaim’s DGA total domains generated vs. total
colliding domains within a time period of ten years

malware sample’s system specification, concise, readable and
well documented. We have written one end-to-end acceptance
test and five additional scenarios that ensure the correctness of
the DGA’s subfunctionality. The implementation of one piece
of the DGA at a time and replacing not yet existing pieces
by mock objects enables malware analysts to focus only on
relevant code. This keeps the window of code to be analyzed
at a time small and also supports the understanding of the
code.

VI. LIMITATIONS

We discuss limitations of BDD in malware analysis in this
section. A major objection against our approach might be the
decrease in time efficiency. For example, malware analysts
have to write testing code, they have to capture test data or
they have to clean up the production code. It might be faster
to just write hacky code. However, we believe that this extra
time invested pays off. Our approach eliminates the problems
described in Section II. So far there are no estimates of at
how much overhead this process comes with. Malware analysts
with experience in this process can minimize the overhead to
a negligible amount of time. We consider the estimation of the
efficiency of our approach as future work. We would like to
point out that TDD faces similar objections. In industrial case
studies at a major software company, it was estimated that the
overhead of TDD ranges from 15% to 35% [1]. However, the
tests served as documentation of the code and a significant
increase in code quality was also measured. Another objection
might be that our approach draws its main idea – using a
*-driven development process – from software development.
One might argument that a major requirement in this field is
reusability. Code that malware analysts write does not have to
be clean, tested and well documented since it will be discarded
quickly. On the one hand, there are many long-running projects
– with many contributers – that incorporate a lot of code
written by malware analysts. In this case, you want to have
code that is tested, readable and documented. On the other
hand, these are not the only advantages of our approach. In
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addition, our approach helps malware analysts to increase their
focus. For example, by fading out non-relevant binary code
with the help of mock objects, malware analysts focus only
on the relevant parts. This might also lead to a speed up and
counteract the above mentioned decrease in time efficiency due
to, for example, writing tests.

VII. RELATED WORK

In this section, we discuss related work in the fields of
software testing and extraction of malicious behaviors.

A. Software Testing

The need for testing software emerged early. Since 1957
requirements of software systems have been tested [21]. Soft-
ware testing was also an integral part of the waterfall model
that was first mentioned in 1976 [6]. Test-Driven Development
emerged from extreme programming in 1999 [7]. Several
industrial case studies on the benefits of TDD exist (e.g. [2]
or [1]). Dan North proposed Behavior-Driven Development in
2006 [8]. Van Lindberg describes how test-driven development
can be used in open source development teams that write
replacements for proprietary software [22]. In his approach,
two teams work together. The first team is the specification
team that provides test suites and the development team that
implements code for these test suits. This method ensures that
copyrightable expressions are screened from the development
team. Durelli et al. propose a process for reengineering legacy
systems that is aided by TDD [23]. However, their approach
assumes that the source code is available in a higher-level
language and also the documentation can be consulted.

B. Extraction of Malicious Behaviors

Caballero et al. presented an approach for binary code
extraction [4]. Their approach identifies assembly functions
interfaces and extracts the corresponding code. Please note that
behaviors of interest are not limited to assembly functions and
that obfuscation schemes remove functions or introduce eso-
teric calling conventions. Kolbitsch et al. proposed Inspector
Gadget [3]. An automatic system for extracting algorithm of
certain malicious behaviors from binaries. These algorithms
are isolated, extracted and embedded in a stand-alone exe-
cutable. They proof their approach to be feasible in several
case studies. However, their approach has various limitations
that make it impracticable. The authors of [24] presented a
similar approach to Inspector Gadget that can extract domain
generation algorithms from malicious binaries. Even though
they show the feasibility of their approach, it suffers from
similar shortcomings like Inspector Gadget.

VIII. FUTURE WORK AND CONCLUSION

In this paper, we have shown how Behavior-Driven Devel-
opment can be integrated into the malware analysis process.
As in classical software development, it enhances the malware
analysis process with readable, documented and tested code
that has been developed closely to the behavior of interest’s
system specification given by the malware sample.

Future work will focus on user studies for identifying
improvements and common problems. Furthermore, several

tools that could make the process faster will be implemented.
Such tools include a tool for acquiring test data and a smoke
test generator.

APPENDIX A

Let us assume that some binary code was compiled with
compiler C and assembled by assembler A. When this binary
code is disassembled with disassembler D and decompiled
with a decompiler B then this will result in at least syntacti-
cally different code. In the worst case, something went wrong
in the decompilation and the result is semantically different.
For illustration purposes, let have a look at Google Translate
[25]. While the quality of its output is normally acceptable,
the result of a translation chain from language L1 over L2

and L3 back to L1 produces at least syntactically different
translations. For example, the German phrase ”Der Tag, an
dem die Mauer fiel, war historisch.” is translated to Dutch as
”De dag dat de Muur viel, was historisch.” and from Dutch to
Afrikaans as ”Die dag dat die Muur geval het, was histories.”.
When translated back from Afrikaans to German it yields to
”An diesem Tag, dass die Wand Fall war Geschichte.”. This
phrase is not only syntactically different but also semantically.
Actually, it makes no sense at all. Please note that all three
languages belong to the same language family. Similar effects
can be observed, for example, when compiling C code with
Visual Studio and decompiling this code to Pascal.
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