
 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector (numbering of pages to be confirmed)

Practical Experiences of Building an IPFIX Based

Open Source Botnet Detector

Mark Graham, Adrian Winckles, Dr. Erika Sanchez-Velazquez

Department of Computing and Technology
Anglia Ruskin University

Cambridge, United Kingdom

mark.graham@anglia.ac.uk; adrian.winckles@anglia.ac.uk; erika.sanchez@anglia.ac.uk

Abstract—The academic study of flow-based malware

detection has primarily focused on NetFlow v5 and v9. In 2013

IPFIX was ratified as the flow export standard. As part of a larger

project to develop protection methods for Cloud Service Providers

from botnet threats, this paper considers the challenges involved

in designing an open source IPFIX based botnet detection

function. This paper describes how these challenges were

overcome and presents an open source system built upon Xen

hypervisor and Open vSwitch that is able to display botnet traffic

within Cloud Service Provider-style virtualised environments. The

system utilises Euler property graphs to display suspect

“botnests”. The conceptual framework presented provides a

vendor-neutral, real-time detection mechanism for monitoring

botnet communication traffic within cloud architectures and the
Internet of Things.

Keywords—IPFIX; Cloud Detection System; Botnets; Property

Graphs

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) style environments
provide a low cost, scalable environment from which to host
botnets. Botnets have been hosted from within Dropbox [1] and
Amazon AWS [2]. Furthermore, IaaS provides a botmaster with
a controllable environment. As the botmaster owns this
environment, anti-malware detection can be removed and the
bot hosted safe in the knowledge it is not going to be detected.
This infected environment can then be rapidly cloned to create a
sizeable botnet. Where a Command and Control (C&C) server
is hosted in a cloud virtual environment, should the server be
detected, the cloud makes it easy to spin up a new C&C server
elsewhere. A botnet hosted within a cloud service provider
(CSP) has the option to either attack a target within the Internet,
or turn its focus internally and attack the cloud itself; where
potential internal targets include other cloud tenants, or the cloud
infrastructure such as storage repositories. Malware has been
discovered in the wild with the ability to escape from virtualised
hosts [3] and virtualised guest machines [4] [17], thereby
possessing the ability to propagate across a virtual environment.
Crisis malware [3] was the first malware discovered to
specifically attack virtualised environments, such as those that
will make up the Internet of Things (IoT).

Packet capture malware detection methods, such as anti-
virus software or Intrusion Protection Systems, can present
issues for CSPs. Traffic measurement on high speed links
requires expensive, powerful, often dedicated devices capable of
performing fast packet-processing functions distributed across
multiple network locations. Packet capture detection relies on
payload inspection to determine the presence of malware.
Within CSPs this intrusive method can impact the privacy
requirements of tenant data. Additionally, in order to take down
a botnet, the C&C server must be identified and eradicated;
something anti-virus software is not yet capable of doing. Flow
monitoring has become the prevalent method for passive traffic
monitoring in high-speed networks [5]. In 2013, almost 80% of
ISP and network operators surveyed had technology in their
network that is capable of capturing flow [6]. NetFlow v5 and
v9 being the most common implementations of flow. To date,
NetFlow has been vendor proprietary. With each vendor’s
variant of NetFlow being slightly different, most flow export
installations have been restricted to single vendor platforms.
IPFIX was ratified in 2013 (RFC 7011 – RFC 7015) as the
standard for flow export. Whilst IPFIX is built upon NetFlow
v9, IPFIX can be considered a protocol in its own right,
developed to address some of the drawbacks of NetFlow (see
section II), such as the protocol’s lack of security. As well as
being standards based, IPFIX offers other advantages over
NetFlow which may be useful for botnet detections; such as
customisable templates through Information Elements, built-in
IPv6 specifications and bi-directional flows.

As part of a larger project to construct an eco-system for
botnet neutralisation within cloud environments such as the IoT,
this paper describes the building of the data collection element
of the eco-system.

The criteria for this collection element is:

 it must replicate the virtualised environments found
within clouds providers who might host IoT-style
applications;

 it should be built upon currently available open source
solutions wherever possible, in order to allow future
software developmental contributions;

 it will feed into a (planned) analysis neural network;
which has the functionality for determining malicious
traffic from benign traffic and quarantining infected

This paper was presented at Botconf 2015, Paris, 2-4 December 2015, www.botconf.eu
It is published in the Journal on Cybercrime \& Digital Investigations by CECyF, https://journal.cecyf.fr/ojs

c b It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

DOI: 10.18464/cybin.v1i1.7

DOI

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

(numbering of pages to be confirmed) M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector

virtual machines (VMs); either by diverting flow
communications based on Software Defined Network
(SDN) architecture, or through automatic relocation and
isolation of the infected machine [7];

 it should support both NetFlow and IPFIX export, to
permit the academic comparison of both protocols in
botnet detection.

The remainder of the paper is structured as follows. Section
II of this paper reviews some of the limitations of NetFlow when
used as the principal protocol to collect botnet communication
traffic, and how IPFIX is designed to overcome these. Section
III explains the conceptual design behind the novel detection
methods presented within this paper, with section IV describing
the flow monitoring architecture constructed from this design.
Section V describes some of the issues encountered whilst
building the environment and demonstrates the output of the
built system. Section VI considers some of the limitations of
flow-based detection. Finally, section VI reflects on what was
learnt from this experience and how the proposed framework
contributes towards protecting the IoT.

II. NETFLOW AND IPFIX

In the late 1980s Simple Network Management Protocol
(SNMP) was the standard for network management. SNMP was
designed to give basic information on a device status such as
up/down status and common error alerts. The information
available via SNMP was somewhat limited, so syslog was often
used alongside SNMP to provide more granular and detailed
event information. Unlike SNMP which pulls information off a
device, syslog is a push technology which means devices send
information without being polled. This makes syslog ideal for
logging information about devices, but its unstructured data
format makes it slow for querying and reporting. Today, flow
export protocols send the same types of data as SNMP traps and
syslog, with the advantages that flow export is a push technology
which reports highly structured information that is ideal for
reporting and querying. The IETF (Internet Engineering Task
Force) first published the idea of aggregating packets into flows
using packet header information for Internet accounting back in
1991, but this work group was disbanded in 1993 due to a lack
of vendor interest. In 1996, Cisco patented a technology based
on flow export [8]. In 2002, Cisco released their first
commercially available version of this flow export – NetFlow
v5. With the release of NetFlow v9 (or Flexible NetFlow) Cisco
enhanced NetFlow v5 with support for templates, IPv6, MLPS
and VLANs. But NetFlow has some limitations. In 2008 the
IETF proposed to create a standard to address these
shortcomings. In 2013, the IPFIX standard was ratified as RFC
7011 – RFC 7015 [9] with some improvements over NetFlow.

A. Template Extensions

Although NetFlow v5 and v9 are the most common
implementations of flow today, there is no support for any
extensions in the template set which allow new field types to be
created as needed. Sometimes threat detection needs to
understand information that is not available in the NetFlow v9
template. IPFIX was designed as an extensible data model to be
used in network security applications with flexibility and
customisation front of mind. NetFlow v5 has a fixed template of
18 fields, which confines the NetFlow v5 PDU to 48 bytes. RFC
3954 [10] defines 79 fields that are available in NetFlow v9.
Cisco’s version of NetFlow v9 defines 104 fields, however these
are proprietary and will not necessarily interoperate with other
vendor’s definition of NetFlow v9. IPFIX enterprise elements

can be used to gain more information about flows by introducing
new field types, known as Information Elements (IE). RFC7012
[11] does not define the IEs, but states that IANA is responsible
for maintaining Private Enterprise Numbers for defining the
enterprise elements. IANA recognises 433 official fields in the
IPFIX standard, with fields 433 - 32767 available for vendor
specific assignment. IPFIX allows a vendor to export whatever
layer 2 to layer 7 information they want in a standardised
template compatible between vendors. Support of enterprise
elements will mean IPFIX will be superior to NetFlow in next
generation network monitoring, supporting higher performance
for collection and use in analysis tools [12]. IPFIX also allows
for variable length fields. NetFlow can achieve similar but with
fixed columns sizes, which usually ends up with wasted space
with every flow thereby increasing storage requirements [13].

B. Transport Protocol

The default transport protocol for NetFlow v9 is UDP [10].
Unlike TCP, UDP is not reliable, secure or congestion aware.
This can lead to UDP flooding when a device is down or
experiencing a DDoS attack. Additionally, transmitting flow
statistics from the observation point over unreliable UDP can
induce loss of measured data. IPFIX allows the transport
protocol to be selected from SCTP (Stream Control
Transmission Protocol), TCP or UDP. SCTP is congestion
aware and is the recommended transport protocol as SCTP
allows graceful degradation by selectively dropping exported
datagrams under high load rather than overloading buffers.
Additionally, SCTP mandates a cookie-exchange mechanism
designed to defend against DoS attacks [9]. SCTP can be
difficult to transmit over the Internet as some devices will drop
these packets due to unrecognised protocol numbers, hence
IPFIX supports TCP and binds well to TLS for secure transport,
especially over the Internet. Cisco’s NetFlow v9 also allow for
SCTP support to provide TCP like sequential packet delivery
reliability and congestion awareness over UDP.

C. Bi-directional Flow

NetFlow defines a flow as a uni-directional sequence of
packets with some common properties that pass through a
network device [10]. RFC 5103 [14] allows IPFIX to be
extended for the many applications where flow analysis benefits
from associating the upstream with the downstream flows of a
bi-directional communication. This is particularly useful for
separating unanswered from answered TCP requests, such as
when a botnet is searching for a peer that is offline. Bi-flow can
also determine which party initiated the conversation, which
may be useful when studying P2P traffic.

D. Security

When NetFlow was designed it was believed that flow
records would be confined to private networks, with collectors
and exporters in close proximity. Hence, NetFlow did not
impose confidentiality, integrity or authentication requirements
on the protocol as this reduced the efficiency of the
implementation [10]. This leaves NetFlow v5 and v9 open to
Man-in-the-Middle attacks, packet tampering, packet forgery
and attacks on the collector. IPFIX implementations must
address confidentiality, integrity and authentication; including
data obfuscation, for example, through encryption (as outlined
in RFC 7011 [9] section 11).

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector (numbering of pages to be confirmed)

E. Next Generation Networking

NetFlow has a fixed key structure that lacks the ability to
monitor more complex network protocols such as IPv6, MPLS
and multi-cast [15]. NetFlow v5 and many non-Cisco NetFlow
v9 vendors do not support IPv6, whilst IPFIX and Cisco’s
NetFlow v9 do. IPFIX was chosen over NetFlow v9 when
looking at anomalous traffic in IPv6 flows [15], as the ease of
extending IPFIX to include additional Information Elements
allowed the design of new templates for detecting ICMPv6-DoS
attacks, IPv6 extension headers and monitoring IPv6-over-IPv4
tunnelling.

F. Vendor Neutrality

NetFlow comes in many flavours; Cisco’s NetFlow,
Juniper’s JFlow, Alcatel-Lucent’s CFlow, Citrix’s AppFlow and
Huawei’s NetStream, to name but a few. Some vendors adhere
to the NetFlow v5 structure, others adhere to a NetFlow v9’s
structure. Cisco further extends NetFlow v9 with their own
propriety solutions. As a ratified standard IPFIX allows
interoperability between vendors. This is especially important
when defining additional IEs for advanced flow-based
monitoring systems.

III. CONCEPTUAL DESIGN

The criteria for the built detection element was outlined in
section II:

1) Replicating cloud provider virtualised environments
The system design has to incorporate two principles of CSP

design: a) tenant isolation and b) tenant privacy. To achieve
tenant isolation CSPs utilise virtualised infrastructures which
additionally reduces the hardware footprint whilst increasing
equipment utilisation. The three most common hypervisor
platforms amongst CSP are Citrix’s Xen, Microsoft’s Hyper-V
and VMware’s ESXi. Of these Xen Hypervisor is open source.
Xen is also very common amongst CSPs and is used by Amazon
AWS, OpenStack and Apache’s Cloudstack. Xen, Hyper-V
server and ESXi are all bare-metal hypervisors which boot
directly from BIOS without additional operating system
requirements between them and the hardware. Xen also offers
para-virtualisation. Whilst full HVM (Hardware-assisted
Virtualised Machine) more closely resembles the complete
hardware isolation of a physical server, CSPs, like Amazon, tend
to run para-virtualisation as it is faster when running on Linux
OS.

Signature-based packet capture techniques, as used in anti-
virus software and Intrusion Detection Systems, rely on packet
payload inspection to detect malware. Packet inspection in CSP
networks is not an option as it jeopardises tenant privacy
requirements. Additionally, forensic detection techniques such
as anti-virus serve to protect an individual host (or network)
through disinfection. Botnet elimination requires that the C&C
server(s) must be detected and taken down. This is not possible
through forensic techniques, making traffic-based techniques
more suited to botnet detection systems. Traffic monitoring
using PCAP captures both traffic header information and
payload, thereby beaching the privacy requirement. Flow export
captures only packet header information, thereby retaining
tenant privacy.

2) Open Source
Already mentioned is the desire to use open source

equipment wherever possible as future software will need to be

written to ensure interoperability between each element in the
overall neutralisation eco-system.

3) Feed into a Botnet Analysis and Recognition AI
The detection test bed will be used to capture network traffic

which will undergo a pre-processing function (such as filtering
and correlation) before being passed onto a neural-network AI
element which hunts for malicious traffic signatures. Should the
AI detect malicious traffic, the AI will notify an isolation system
which will either dynamically reconfigure the infected network
segment via SDN, or undergo automatic VM relocation
placement. The SDN network is being developed around
OpenFlow protocols supported by Open vSwitch.

4) Support both NetFlow and IPFIX export
One function of the test bed will be to compare NetFlow

against IPFIX functionality. As such, the system has to be
capable of supporting both. Juniper is one of the few hardware
vendors who support both NetFlow and IPFIX. Citrix’s
AppFlow supports IPFIX and Huawei only support NetFlow.
Cisco supports NetFlow on all of its hardware products, and is
starting to increase support for IPFIX. As the environment
replicates a CSP, virtual switches will be utilised. One of the few
virtual switches that supports both NetFlow and IPFIX export is
Open vSwitch (OVS) [16]. OVS has the added benefits of
pairing well with Xen Hypervisor, is supported in OpenStack
and Apache CloudStack, whilst being open source.

IV. FLOW MONITORING ARCHITECTURE

Malware attacks on virtual environments can be categorised
[18] as:

1) Intra-VM Attacks

 Cross VM Side-Channel Attacks where malware gains
information about a neighbouring VM via information
leakage through convert signalling channels [19] [20]

 VM Hopping allows malware to jump to another VM on
the same host [21] [22]

2) Inter-VM Attacks

 VM Hyper-jacking where a rogue module, such as a
compromised hypervisor, is inserted between the
physical hardware and machine operating system
allowing an attacker to control the virtual machines on
that host [23]

 Guest VM Escape allows malware to escape from the
guest VM onto the host operating system. Typically the
host has root privilege, thereby allowing the malware
access to other virtual machines or the network [21].
Cloudburst [4] and Venom [17] were both capable of
VM Escape

 Host Escape allows malware to jump from the host
operating system into a guest VM. Crisis malware
(OSX.Crisis / W32.Crisis) [3] in 2012 was the first
known malware to do this

The flow monitoring process is a complete chain of events
comprising of four stages: packet observation, flow export, data
collection and data analysis [5].

A. Packet Observation & Flow Export

The correct citing of flow exporters to detect attacks on
virtual environments is important, as all exporters tested for the
architecture did not support capture data in promiscuous mode.

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

(numbering of pages to be confirmed) M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector

This meant that to detect intra-VM attacks, an observation point
is required within the tenant’s virtual environment. This will not
be possible within CSP networks due to tenant privacy
expectations. Exporters located in the LAN, for example a
hardware exporter on a switch, can detect traffic destined for that
switch port, but are blind to intra-VM attacks and requires an
observation point on each LAN segment. Likewise, for a
software exporter cited on a server. This would capture traffic
between VMs distributed across that server, but would also miss
intra-VM communication.

All possible locations to cite an exporter were evaluated to
understand the visibility at each collection point. It was found
that an exporter cited on a hypervisor would export both intra-
VM and inter-VM traffic providing maximum traffic visibility
for the least number of probes (see figure 1). This does however
necessitate an exporter on each server under observation.

B. Data Collection & Data Analysis

Even on a simple test infrastructure, a flow exporter located
on each hypervisor captures a considerable amount of traffic.
When flow capture is compared with PCAP traffic capture, flow
captures exactly the same information as PCAP, minus payload,
albeit with a considerably reduced cost of data storage. Under
test conditions a 2.9GB file was transferred between two servers.
Over this transfer period WireShark collected nearly 3.1GB of
traffic (including both the file transfer and background network
traffic). Similarly, IPFIX exported the same information, minus
payload, in as little as 43KB.

Exported data will be collected on a central server where it
will be collated according to export time stamp. Hence, every
IPFIX exporter needs to synchronise their internal clocks to
ensure time stamp consistency across the monitoring
infrastructure. As software IPFIX exporters take their timestamp
from their parent server, NTP on the hypervisor host server can
be used to synchronise exporter clocks. In addition, as the IPFIX
collector takes it’s time source from the server, the internal clock
in each VM need not be synchronised. Once collated, data
unrelated to botnet detection will be filtered (primarily network
layer 2 and 3 information such as ARP, IPv6, STP, broadcast
traffic) in order to improve the performance of the analysis
phase. Filtered flows will be collected in CSV comma delimited
format. When viewed as a spreadsheet, the data could be filtered
on any of the captured IEs. Source & destination IP address were
found to be the primary fields to determine conversation, with
other template data adding context to these conversations.

In order to visualise botnet communication, the flow data
will be represented as a property graph (see figure 2); where
nodes represent IP addresses and edges represent the data flow
relationships. Creating relationships from the IPFIX template
data allows inter-nodal conversations to be viewed by protocol,
port number, direction, etc. Property graphs were chosen
primarily because graph databases provide the structure and
ability to query relational data. However, property graphs lend
themselves to analysis of clustered data and data correlation.
Experiments have shown that when utilising property graphs to
understand botnet communication, analysing the impact of
graph deformation from removing significant nodes is more
accurate than analysing the vertices with the most edges [33].
Likewise, the number of edges per node can give an indication
to P2P traffic [34]. Property graphs will be manually analysed
for indications of botnet communication, however work is
planned to implement a neural network-based AI to interpret the
data and recognise malicious traffic emanating from infected
nodes.

Fig. 1. IPFIX Probe in DOM0

Fig. 2. Property Graph of Botnet Communication

V. RESULTS: LEARNING FROM THE SYSTEM BUILD

A. XenServer

The conceptual framework specifies how the botnet detector
will be built upon Xen hypervisor with Open vSwitch as the
software switch between tenant VMs. Citrix XenServer is an
open source project available as a free download [24].
XenServer 6.2.0 is a self-contained package that includes a
Linux-based operating system (CentOS v5.5) and the Xen
Hypervisor (v4.1.5) which provides the secure control domain
(DOM0) on top of the underlying OS. The Xen Server 6.2.0
package also includes Open vSwitch v1.4.6 and Citrix’s
XenCentre; a VM management GUI based on the XAPI tool
stack. Upon install, the self-contained package boots a simple
install wizard which installs CentOS, Xen hypervisor, XAPI tool
stack and Open vSwitch. A further manual installation of Citrix
XenCentre allows the import of guest OS .iso files into a central
repository, after which XenCentre can create and configure
guest VMs. Using the XenCentre management GUI, XenServer
6.2.0 provides the control for NetFlow v5 export and “Flows v
Time” visualisation graphs. XenCentre would not support IPFIX
collection, so an alternative IPFIX analysis tool was required.
Open vSwitch supports IPFIX export after release v1.10. The
upgrade to OVS v1.10 requires CentOS 5.6 i686 RPM or above.
XenServer v1.4.6 shipped with CentOS 5.5 i386 RPM. During
installation XenServer partitions DOM0 into 4GB partition of
which about 3.8GBs is used by Xen hypervisor. Before any
upgrades can be undertaken, this partition must be manually
enlarged to 8GB with a re-installation of XenServer. Whilst it
may be possible to upgrade CentOS 5.5 i386 to CentOS 5.6 i686,
the limited functionality of the cut-down CentOS OS and lack of
documentation meant CentOS refused to be upgraded beyond

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector (numbering of pages to be confirmed)

5.5. It was therefore impossible to enable IPFIX export on the
XenServer 6.2.0 platform.

B. Xen Creedence

In 2014, Xen released Creedence Alpha v6.4.94 [25] (with
the official release called XenServer v6.5). Another self-
contained package, Creedence includes CentOS v5.10 and OVS
v2.1.2 which supports IPFIX. Again the DOM0 is partitioned to
4GB but can be extended to 8 GB during installation. Once this
network was configured, OVS was set to export the IPFIX
format. The IPFIX template was not recognised by XenCentre,
nor several other open source collectors and commercial tools.
WireShark confirmed that IPFIX traffic was indeed being
exported from OVS, but the collectors were not recognising the
flow timestamps. OVS was set to sample IPFIX at a 1:1, but
appeared to be exporting every single flow without aggregation,
resulting in huge amounts of flow data collected in a very short
timeframe. All the probes trailed were able to detect OVS
exporting NetFlow v5, NetFlow v9 or sFlow, but not IPFIX. It
was decided to retain OVS as the vSwitch, but to install an IPFIX
exporting probe into the hypervisor. A number of open source
probes were tested but failed to install correctly into the
hypervisor, possibly due to the restricted functionality of the cut
down CentOS operating system. At this stage it was decided to
build a bespoke cloud stack.

C. Bespoke Build

A clean Ubuntu 14.04 operating system was installed as the
server OS. Into this Xen Hypervisor 4.4 64-bit [26] was installed
as DOM0. By default this ships with the XEND toolstack which
has limited functionality, so this was upgraded to the XAPI
toolstack. Open vSwitch v2.0.2 was installed as the virtual
switch. Again OVS appeared to present timestamp and
aggregation issues with IPFIX. After testing a number of open
source exporter probes, nTop’s nProbe [27] was found to export
IPFIX templates from the hypervisor. OpenXenManager is the
recommended VM management software for Xen hypervisor,
however this proved to be buggy when creating new VMs and
closing existing VMs. XenCentre proved a more successful
management system but some configuration was needed to
allow VM consoles to be viewed. Once the final configuration
was tested and confirmed to work as expected, repeat
installations of the framework onto new servers were taking
almost 30 hours. Optimisation of the installation and
configuration process of framework was undertaken such that
the entire framework would be installed and VMs could be up
and running within 3 hours.

D. C&C Botnet

Zeus is a popular malicious botnet that is typically used to
steal banking information by man-in-the-browser, key logging
and form grabbing. Zeus was first discovered in 2007. Despite
its age, new active Zeus C&C servers are still being discovered
on a daily basis [28]. One reason for the popularity of the Zeus
bot is the easily accessible DIY construction kit, which allows
someone with malicious intent to create, deploy and manage a
Zeus botnet. The Zeus botnet created for this work was created
from the Zeus crime-wave toolkit v2.0.8.9. When a device is
infected with Zeus, the bot runs silently in the background giving
no tell-tale signs of the compromise. As a C&C botnet, the Zeus
bot must periodically communicate with its C&C server for
updates, attack instructions or to report back with stolen
information. With Zeus, this communication takes place over
HTTP (TCP port 80). It is this communication traffic that this

research intends to capture and analyse, in order to monitor the
progression of Zeus across the virtual infrastructure.

E. IPFIX Template

Section II explained how IPFIX’s extensible IE template
allows exportation of any layer 2 to layer 7 information in a
standardised template compatible between vendors. Figure 3
details the IPFIX template constructed for this architecture, in
order to detect botnet traffic in a CSP environment. This IPFIX
template contains 9 of the original 18 fields found in NetFlow
v5; decreasing the PDU size from 48 bytes in NetFlow v5, to 24
bytes, thereby increasing the efficiency of the PDU. This frees
PDU space for the addition of extra fields which might aid in the
detection of botnets. In this template protocol mapping, bi-flow
direction, source MAC address & destination MAC address
were added at a cost of 18 bytes. Bringing the IPFIX template to
42 bytes in total compared to NetFlow v5’s 48 bytes. Study into
creating an optimised IPFIX template specifically for botnet
detection has started. This may take advantage of IPFIX’s ability
to support plugins for additional IE export, such as HTTP, DNS
and SMTP fields.

Fig. 3. IPFIX Template

F. Botnests

Figure 4 shows a property graph of nodal communication
across multiple ports. Figure 5 shows the same plot of nodal
communication, but confined to HTTP (Port 80) traffic only;
where the size of the relationship connection is proportional to
traffic sent and received. Figure 5 shows some HTTP traffic
back to a server, as would be expected. Figure 5 also shows PC’s
#3, #4, #5 and #8 connecting to PC #7 via HTTP. As PC #7 is a
standard PC rather than a server, this suggests irregular
behaviour indicating a potential botnest hosting a C&C server.
In this instance, PC #7 hosted the Zeus C&C, whilst #3, #4, #5
and #8 were infected with Zeus bot executable. Further
granularity can be added to these flows when displayed as in and
out traffic captured using the BiFlow_Direction field.

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

(numbering of pages to be confirmed) M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector

Fig. 4. Property graph of all flows

Fig. 5. Property graph of HTTP only flows

VI. DISCUSSION

 The template in figure 3 was constructed by exporting Zeus
botnet data over the LAN and VM infrastructure and selecting
IE fields that either a) changed between malicious and benign
traffic, or b) would provide a useful pointer to indicate malicious
traffic. Testing is underway to create a template that contains
fields that are optimal for detecting a range of botnet malware,
which can be fed into a detection algorithm. One build criteria
for this architecture was to mimic the privacy requirements
found within CSP networks, and thereby assuming that data
from within the payload would not be available to such a
detection algorithm. A challenge in flow-based detection is
obtaining sufficient characteristic data from the packet header.
Whilst discarding the payload is well-suited for privacy
preservation, it comes at a cost. Namely that many
distinguishing malware characteristics are hidden in the payload,
such as HTTP URL and HTTP POST/GET information. Many
IPFIX collectors support extension plug-ins that are able to
capture payload information. Testing has shown that it is
possible to export bot characteristic data such as HTTP and DNS
information using IPFIX extensions. In turn, this raises the
question of where privacy starts and ends, and whether it is
acceptable to sacrifice some degree of privacy in order to detect
malicious activity. Further testing needs to be undertaken to
establish the minimum set of payload data required for botnet
detection, and how payload encryption impacts such detection
mechanisms.

 Section II highlights the protocol transport features and
security mechanisms built into the IPFIX standard in order to
preserve and protect the data flows between exporter and
collector. These include congestion awareness protocols such as
SCTP to protect against DoS attacks, and packet obfuscation to
protect against flow tampering and MITM attacks. In any
detector-based system, the detectors themselves present an
attack surface. Whilst this architecture provides partial
protection for the probes from their citing outside of the virtual
environment, a mechanism is needed to protect the detection
system from attack from the LAN, or from malware escaping the
virtual environment.

VII. CONCLUSION

Botnet detection using NetFlow protocol is an established
concept. Since the ratification of IPFIX as a standard in 2013
academic study has begun to evaluate IPFIX against NetFlow.
No academic work could be found that harnesses IPFIX for
botnet detection. Several papers claim to do this, but upon closer
inspection use proprietary NetFlow v9. This paper contributes to
the state of the art by being the first to develop a flow-based
IPFIX export framework for use in the academic study of
virtualised environments.

This framework was designed specifically for application
within cloud provider and virtual environment networks, but is
flexible enough to be applied to any LAN environment detection
system. As the system is built upon flow export, rather than
packet inspection, it is not impacted by payload encryption
techniques used by botnets for detection evasion. This
framework meets the build criteria as follows:

1) Replicate cloud provider virtualised environments
Xen Hypervisor and Open vSwitch were used to replicate

cloud provider virtualised environments. Locating the flow
export element within the hypervisor allows collection of intra-
VM and inter-VM traffic. This study came across obstacles
when trying to utilise the XenServer eco-system for IPFIX
capture in virtual environments, choosing to replace some of the
elements of the XenServer stack. Table 1 summaries this
framework and draws comparisons against the XenServer eco-
system for capture and display of traffic communication. In
August 2015, XenServer underwent an upgrade to bring the
CentOS operating system up to current specifications. It will be
interesting to understand whether the update removes some of
the obstacles encountered in this study.

2) Utilise currently available open source solutions
This was achieved with the exception of nProbe. nProbe is

not strictly open source, but code can be made available to
research institutions upon request. Additionally, plugins can be
constructed for nProbe that extend the IE template. This
framework has been constructed to allow alternative probes or
collectors to be inserted in place of nProbe. The suitability of
alternative exporters, such as YAF [32], is being studied. Further
work is needed to understand why Open vSwitch was not
exporting IPFIX timestamps that could be recognised by other
collectors and why Open vSwitch was not aggregating IPFIX
flows. Overcoming these issues and designing Open vSwitch to
support extensible IE template customisation may simplify the
framework by enabling the vSwitch to become the flow
export/collection element.

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector (numbering of pages to be confirmed)

 Table 1 Bespoke IPFIX Detector compared with XenServer

3) Feed into a neural network analysis element
The aim of this framework is to become the data collection

mechanism for part of a larger eco-system for botnet
neutralisation within cloud environments. The output data from
the exporter is currently converted to CSV format before being
filtered and collated in Python, then exported to Neo4j for
display and manual analysis. Further work is needed to
customise the collector output data to form the input mechanism
to a neural network detection system capable of dynamically
determining botnet traffic profiles from background network
traffic, before feeding into a containment mechanism.

4) Support both IPFIX and NetFlow export
NetFlow v5 exports a fixed template of 18 fields. Whilst

these fields are sufficient for capture of network management
data, IPFIX (and proprietary NetFlow v9) was designed to allow
customisation of the template to capture additional criteria for
new applications, such as malware detection. This framework
permits export of both NetFlow v5 and v9 as well as IPFIX.
Furthermore, the exporter (and vSwitch) utilised can
additionally export sFlow and support port mirroring should
academic study of these against IPFIX warrant. This work
devised a simple IPFIX template (see figure 3) that exports
sufficient information to confirm the presence of C&C botnet
traffic. Further work is required to design an IPFIX template that
is optimised for botnet detection. This may include additional
exporter plugins to capture characteristics of the botnets under
test, and should be designed for detection of C&C, P2P and IRC
botnets. Within a CSP, such a template not only needs to respect
tenant privacy, but the template size should be kept to a
minimum due to the large number of flows captured over high-
speed multi-gigabit environments; thereby reducing storage
requirements and improving analysis performance.

CSPs are a crucial building block in the IoT, providing
centralised storage and accessibility of IoT data. As the
“intelligence” of more IoT devices is migrated into the cloud,
dumb endpoints will further reduce the cost of the IoT [35]. As
CSP infrastructure is built around virtualised architectures,
citing malware detection mechanisms within tenant
architectures is difficult if tenant privacy is to be respected. This
work demonstrates how flow export detection systems
overcome these restrictions by allowing detection functions to
be located upon a hypervisor to capture both intra-VM and inter-
VM traffic without packet inspection. Now that the IETF has
ratified IPFIX as a fully workable standard, flow solutions based
upon IPFIX are starting to emerge. As more vendors support

1 Open vSwitch will export NetFlow v9, but XenCentre collects this a NetFlow v5

IPFIX, CSPs will replace their NetFlow based network
management solutions with IPFIX capable next generation
networking technology. This standards based approach to flow
export allows vendor neutrality and, over time, IPFIX will
overtake NetFlow to become the prevalent protocol. This work
demonstrates that open source IPFIX technology is of sufficient
maturity to create a botnet detection function for real world
application.

REFERENCES

[1] Trend, “Dropbox Used in Delivering UPATRE Malware”, June
2014. [Online].

https://www.trendmicro.com/vinfo/us/threat-

encyclopedia/spam/566/dropbox-used-in-delivering-upatre-
malware.

[2] SERT, “The SERT Q2 Quarterly Threat Intelligence Report”, July
2014. [Online].

https://www.solutionary.com/resource-center/blog/2014/07/sert-

q2-quarterly-threat-intelligence-report/.

[3] Symantec, “Crisis for Windows Sneaks onto Virtual Machines”,
August 2012. [Online].

https://www.symantec.com/connect/blogs/crisis-windows-sneaks-

virtual-machines.

[4] K., Kortchinsky, “CloudBurst”, Black Hat USA 2009 Conference,

Las Vegas, 2009.

[5] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R.Sadre, A. Sperotto

and A Pras, “Flow Monitoring Explained: from packet capture to
data analysis with NetFlow and IPFIX,” in IEEE Communications

Survey and Tutorials, vol. 16, no. 4, pp. 2037-2064, 2014.

[6] J. Steinberger, L. Schehlmann, S. Abt, and H. Baier, “Anomaly

Detection and mitigation at Internet Scale: A Survey”, in
Proceedings of the 7th International Conference on Autonomous

Infrastructure, Management and Secuirty, AIMS'13, Berlin, 2013.

[7] R. I. Dinita, G. Wilson, A. Winckles, M. Cirstea and T. Rowsell,

“A novel autonomous management distributed system for cloud
computing environments”, in IECON 2013 - 39th Annual

Conference of the IEEE Industrial Electronics Society, IEEE, 2013.

[8] D. R. Kerr and B. L. Bruins, “Network flow switching and flow
data export”. Washington, DC Patent US6243667 B1, 5 June 2001.

[9] B. Claise, B. Trammell and P. Aitken, “RFC 7011: Specification of
the IP Flow Information Export (IPFIX) Protocol for Exchange of

Flow Information”, 2013.

[10] B. Claise, “RFC 3954: Cisco Systems NetFlow services export

version 9”, 2004.

[11] B. Claise and B. Trammell, “RFC 7012: Information Model fo IP

Flow Information Export (IPFIX)”, 2013.

[12] P. Velan, “Practical experience with IPFIX flow collectors”, in

2013 IFIP/IEEE International Symposium on Integrated network
Management, IEEE, 2013.

[13] M. A. Patterson, “Unleasing the Power of NetFlow and IPFIX”,
Sanford, Maine: Plixer International, Inc, 2012.

[14] B. Trammell and E. Boschi, “RFC 5103: Bidirectional Flow Export

Using IP Flow Information Export (IPFIX)”, 2008.

[15] Y. Lee, S. Shin, S. Choi and H. G. Son, “IPv6 Anomaly Traffic

Monitoring with IPFIX”, in ICIMP 2007 Second International
Conference on Internet Monitorin and Protection, IEEE, 2007.

[16] OpenvSwitch, “Open Virtual Switch”, June 2015. [Online].
https://www.openvswitch.org.

[17] P. Duckin, “The VENOM ‘virtual machine escape’ bug - what you
need to know”, May 2015. [Online].

https://nakedsecurity.sophos.com/2015/05/14/the-venom-virtual-

machine-escape-bug-what-you-need-to-know/

IPFIX

Framework

XenServer

v6.4.94

DOM-0 OS Ubuntu 14.04 CentOS 5.10

Hypervisor Xen 4.4 (64 bit) [26] Xen 4.4 (64 bit)

Hypervisor API XAPI Toolstack [29] XAPI Toolstack

Virtual Switch Open vSwitch v2.0.2[16] Open vSwitch v2.1.2

Flow Exporter nProbe v6.15 [27] Open vSwitch v2.1.2

Flow Collector nProbe v6.15 XenCentre v6.5

VM Management XenCentre v6.5 [30] XenCentre v6.5

Flow Protocol

Support

NetFlow v5

NetFlow v9

IPFIX

NetFlow v5

(NetFlow v9)1

Flow Traffic

Presentation
Neo4J [31] XenCentre v6.5

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

(numbering of pages to be confirmed) M. Graham, A. Winckles, E. Sanchez-Velazquez, IPFIX Based Open Source Botnet Detector

[18] M. Graham, A. Winckles and E. Sanchez-Velazquez, “Botnet
Detection within Cloud Service Provider Networks using Flow

Protcols”, in INDIN 13th IEEE International Conference on
Industrial Informatics, IEEE, 2015.

[19] T. Ristenpart, E. Tromer, S. Shacham and S. Savage, “Hey, you, get
of my cloud: exploring information leakage in third-party compute

networks”, in Proceedings of the 16th ACM Conference on
Computer and Communications Security, ACM, 2006.

[20] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture”, in Computer Security Applications Conference,

IEEE, 2006.

[21] J. Amarnath, P. Shah, R. Nararaj and R. Pendse, “Security in multi-
tenancy cloud”, in International Carnhan Conference on Security

Technology, IEEE, 2010.

[22] T. Hsin-Yi, M. Sienbenhaar, A. Miede, Y. Huang and R. Steinmetz,

“Threat as a Service? Virtualization's Impact on Cloud Security”,
IT Professional, IEEE, vol. 14, no. 1, pp. 32-37, 2012.

[23] H. Yu-Lun, B. Chen, M. Shih and C. Lai, “Security Impacts of
Virtualization on a Network Testbed”, in Sixth International

Conference on Software Security and Reliability, IEEE, 2012.

[24] Citrix Systems Inc, “XenServer Open Source Virtualization”,

February 2015. [Online]. https://xenserver.org.

[25] XenServer, “Download XenServer”, April 2015. [Online].

https://xenserver.org/open-source-virtualization-download/11-
product.html.

[26] Linux Foundation, “Xen Project”, February 2015. [Online].
https://xenproject.org.

[27] nTop, “nProbe: An extensibve NetFlow v5/v9/IPFIX Probe for

IPv4/v6”, March 2015. [Online].

https://www.ntop.org/products/netflow/nprobe/.

[28] Zeus Tracker, “Zeus Tracker”, August 2015. [Online].

https://zeustracker.abuse.ch/monitor.php

[29] Linux Foundation, “XAPI”, March 2014. [Online].

https://www.xenproject.org/developers/teams/xapi.html.

[30] Citrix Systems Inc, “How to Download and Install a New Version

of XenCentre”, March 2014. [Online].

https://support.citrix.com/article/CTX118531.

[31] Neo Technology Inc, “Neo4j”, April 2015. [Online].
https://neo4j.com.

[32] C. Inacio and B. Trammel, “YAF: Yet Another Flowmeter”, in
LISA, 2010.

[33] P. M. Collins and M. K. Reiter. "Hit-list worm detection and bot

identification in large networks using protocol graphs". In Recent
Advances in Intrusion Detection, Springer Berlin Heidelberg, 2007.

[34] M. Iliofotou, H. C. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu

and G. Varghese. “Graption: A graph-based P2P traffic
classification framework for the internet backbone.” Computer

Networks, 55(8), pp.1909-1920, 2011.

[35] M. Dillon and T. Winters. “Virtualization of Home Network
Gateways”. Computer, 47(11), pp.62-65, 2014.

