
The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

mirai-toushi: Cross-Architecture
Mirai Configuration Extractor
Utilizing Standalone Ghidra Script

Shun Morishita1, Satoshi Kobayashi1, and Eisei Hombu1

1Internet Initiative Japan Inc.

This paper was presented at Botconf 2025, Angers, 20-23 May 2025, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://cyberjournal.cecyf.fr/
cb It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract
In recent years, IoT malware frequently

launches DDoS attacks, causing massive dam-
age to ISPs. Since Mirai and its variants ac-
count for the vast majority of IoT malware,
security researchers develop configuration ex-
tracting tools to understand its characteristics.
However, Mirai is built on diverse architectures
(e.g., ARM, MIPS, and PowerPC), developing
tools is challenging. Indeed, existing tools only
support 1 or 2 architectures.

In this study, we utilize Ghidra decom-
piler and intermediate representation P-Code
to reduce architecture-dependent codes, and
develop Mirai configuration extractor “mirai-
toushi” that supported 8 architectures.

To evaluate mirai-toushi against real-world
malware, we applied mirai-toushi to 2,426 sam-
ples collected in honeypot/IPS from March
2020 to March 2024. The existing tool ex-
tracted 673 tables containing data such as C2
server destinations and DoS parameters, while
mirai-toushi extracted 1,743 tables. In ad-
dition, mirai-toushi extracted 1,641 password
lists. The results show that mirai-toushi can
extract Mirai configurations effectively. To
be widely used by security researchers, we
have made mirai-toushi publicly available on
GitHub.

Keywords: Botnet, Malware, IoT, Ghidra, Mirai,
mirai-toushi.

1 Introduction
IoT malware had a significant impact in 2016, and even
nearly a decade later, in 2025, it still causes severe dam-

age to ISPs and operators [1]. The analysis of malware
binaries that infect IoT devices plays a crucial role.
For example, it is important for tasks such as identi-
fying attackers’ servers, inferring targeted devices, and
understanding potential threats.

While IoT malware has been widely studied in the
academic field [2], in practical operations, there is a
challenge due to the lack of analysis tools compared to
Windows malware. The primary reason is that IoT
malware infects a wide variety of IoT devices, and
its binaries are cross-architecture (e.g., ARM, MIPS,
and PowerPC), making tool development more diffi-
cult. Additionally, Command & Control (C2) servers
in most IoT malware frequently change, and since their
addresses are hard-coded within the malware, they
cannot be updated. This makes the malware bina-
ries disposable [3], resulting in a large number of sam-
ples. How can we efficiently analyze numerous sam-
ples across diverse architectures? In practical mal-
ware analysis, extracting the malware’s “configuration”
(config) has been a common approach [4, 5, 6]. Given
that in many known malware variants, the code often
remains largely unchanged, with the config being the
main point of difference. Focusing on the config allows
for more efficient analysis by identifying only these dif-
ferences.

Building on this, we deep dive into specific chal-
lenges related to particular malware. By reviewing
our honeypot [7], IoTPOT dataset [8, 9], and samples
posted on MalwareBazaar [10], we found that the vast
majority of the IoT malware samples are Mirai. As
analyzing many samples is crucial, we focused on Mi-
rai and its configs. Several tools (extractors) exist for
extracting Mirai’s configs [11, 12, 13], but they have

Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor 1

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

various limitations (e.g., the number of supported ar-
chitectures, the types of configs that can be extracted,
and the degree of automation).

In order to overcome these challenges, we uti-
lized Ghidra [14] decompiler and intermediate rep-
resentation P-Code to reduce architecture-dependent
codes, and developed Mirai config extractor “mirai-
toushi” [15] that supported 8 architectures. For
improving the accuracy of the tool, we adopted 2
key methods: (a) First, since decompiled output
tends to be inaccurate, we used Ghidra Script’s
updateFunction() to handle the incorrect decompiled
output. (b) Second, since malware binaries vary de-
pending on the architecture version and compiler, we
tuned the tool using verification malware samples built
under various conditions.

To evaluate the effectiveness of the tool with real-
wolrd malware, we applied mirai-toushi to 2,426 sam-
ples collected by honeypots/IPS from May 2020 to May
2024. The existing tool miraicfg [13] extracted 673 ta-
bles containing data such as C2 server domain/port,
Scan Receiver (SR) domain/port, and DoS parameters,
while mirai-toushi extracted 1,743 tables. Additionally,
mirai-toushi extracted 1,641 password lists (passlists)
used for Telnet scans, confirming the effectiveness of
the tool.

To be widely used by security researchers, we first
released the version of mirai-toushi used for the ex-
periment on GitHub [15]. Afterward, we made several
updates. Specifically, the tool was enhanced to han-
dle specific malware that it previously failed to extract
configs in the experiment. In addition, it became capa-
ble of extracting new information such as particular C2
servers and DoS attack functions. This is due to the
minimal architecture-dependent code in mirai-toushi,
which facilitates easier updates and enables future im-
provements.

Our study contributes both academically and prac-
tically, and the key contributions are as follows:

� We developed the Mirai config extractor “mirai-
toushi” that supported 8 architectures. It is only
target for Mirai, but we believe our development
methodology can also be applied to other cross-
architecture malware’s analysis tools.

� We evaluated mirai-toushi against 2,426 real-
world malware samples, and extracted 1,641
passlists and 1,743 tables. It was more effective
than the existing tool in terms of the number of
configs extracted.

� mirai-toushi is open-sourced [15] and can be uti-
lized for actual operations.

2 Related work
IoT malware has been widely studied from multiple
perspectives, including its DDoS attack capabilities,
C2 infrastructure, propagation methods, and malware
analysis techniques.

The primary goal of IoT malware is to launch
DDoS attacks. Therefore, various studies have been
conducted on the impact of DDoS attacks and their
countermeasures [16, 17]. To gain insight into at-
tacker operations, their C2 infrastructure has been
investigated [3, 18, 19, 20]. A large number of in-
fected IoT devices is crucial for carrying out an ef-
fective DDoS attack. Consequently, researchers have
been monitoring IoT malware’s propagation/scanning
methods to understand how to infect a wide range of
devices [21, 22, 23]. In this field, a decoy system known
as a “honeypot” is used to observe scans and collect
malware [8, 9, 24, 25]. Once collected, analyzing the
malware is essential to understand its behavior, char-
acteristics, and potential threats. Malware analysis is
generally divided into 2 techniques: dynamic analysis
and static analysis.

Dynamic analysis aims to understand the behavior
of malware by executing it and observing its actions.
In the case of IoT malware, most studies have been
focused on running malware through whole-program
emulation [8, 9, 26, 27], using QEMU [28, 29]. Re-
cently, the execution of IoT malware with Qiling [30],
an advanced binary emulation framework, has begun
to be explored [31, 32].

Static analysis aims to understand the malware’s
code through reverse engineering, and it may also uti-
lize partial (e.g., code-level and function-level) emula-
tion to analyze its structure and functionality. Since
configs often contain the most significant changes in
malware, they are a key focus of static analysis, with
researchers investigating them to understand malware
characteristics [4, 5, 6]. In most malware, these con-
figs are encrypted, making it difficult to examine them
from readable strings. The config of our target mal-
ware, Mirai, is also encrypted using XOR (We will ex-
plain the details in Section 3). Since the XOR key
is essentially 1-byte, it is possible to identify the XOR
key and decrypt the config by brute-forcing [33, 34, 35].
However, this has the drawback of causing many false
positives and being unable to extract information other
than strings such as numerical data. Configs can be
manually extracted by static analysis, but it is neces-
sary to deal with each malware individually, and the
analysis takes a huge amount of time. For this rea-
son, tools for extracting Mirai configs have been devel-
oped [11, 12, 13].

decrypting-mirai-configuration-with-radare2 [11]
used Radare2 [36] emulation to extract the table of
x86 malware. mirai_string_deobfuscation [12] used
Binary Ninja [37] intermediate language High Level
IL (HLIL) to extract the passlist of ARM malware.
These are partially automated, the XOR key and the
decrypting function must be identified before running
the tool.

miraicfg [13], which was released later, used the dis-
assembly result from Radare2 to extract the table of
ARM/x86 malware. This tool does not require manual
work to run, achieving full automation.

On the other hand, although the tool has not been
made public, existing research [38] conducted a com-

2 Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

prehensive investigation of Mirai by analyzing its disas-
sembly result using IDA Pro [39] and performing par-
tial emulation with Unicorn [40]. This research focused
on ARM/x86 malware, and investigated not only con-
figs but also DoS attack functions.

3 Mirai config
After the release of Mirai source code [41] in 2016, it
has been thoroughly explained [42, 43]. This section re-
views the 2 types of encrypted configs in Mirai: passlist
and table.

3.1 Passlist
Mirai contains a passlist used for Telnet scans, it
is encrypted with an XOR. Passlist is registered
by add_auth_entry() within scanner_init() (Fig-
ure 1). add_auth_entry() takes 3 arguments: user-
name, password, and weight. Username and pass-
word are encrypted with a 4-byte XOR key. The
4-byte XOR key is split into 4 parts (each 1 byte
in size) and XORed with corresponding bytes of
data. This is equivalent to using a 1-byte XOR
key for encryption. For example, if the XOR key
is 0xDEADBEEF, the result will be XORed with 0x22
(byte ⊕ 0xDE ⊕ 0xAD ⊕ 0xBE ⊕ 0xEF = byte ⊕ 0x22).
Weight is used for random selection of the passlist, and
it is not encrypted.

1 void scanner_init(void)
2 {
3 add_auth_entry("\x50\x4D\x4D\x56", "\x43\

x46\x4F\x4B\x4C", 8); // root:admin
4 add_auth_entry("\x43\x46\x4F\x4B\x4C", "\

x43\x46\x4F\x4B\x4C", 7); // admin:
admin

Figure 1: Registration of passlist.

3.2 Table
Mirai contains various configs (table), these values are
encrypted with an XOR. The table of original Mirai
contains as follows:

� C2 domain/port

� SR domain/port

� String printed to the standard output

� Signature to kill the hostile malware’s process

� Command to execute after Telnet login

� Parameter used for DoS attacks

Table is registered as an array by add_entry() within
table_init() (Figure 2). add_entry() takes 3 argu-
ments: ID, data, and data length. ID is used as an
index in the array. Data is encrypted with a 4-byte
XOR key, which is equivalent to being XORed with a

1-byte XOR key, for the same reason as the passlist.
Since the XOR keys are defined in different parts of
the code, the table XOR key may be different from the
passlist XOR key.

1 void table_init(void)
2 {
3 add_entry(TABLE_CNC_DOMAIN, "\x47\x5A\x43\

x4F\x52\x4E\x47\x0C\x41\x4D\x4F\x22",
12); // example.com

4 add_entry(TABLE_CNC_PORT, "\x22\x35", 2);
// 23

Figure 2: Registration of table.

4 mirai-toushi
4.1 Overview
In this study, we developed a cross-architecture Mi-
rai config extractor “mirai-toushi” [15]. “mirai” is
known as future (未来) in Japanese. We appended
the Japanese word “toushi” (透視: perspective, 投資:
investment) to our tool name.

Malware binaries are built differ not only depending
on the architecture type, but also on the architecture
version and compiler. To correctly extract configs for
a variety of malware binaries, we tuned the tool using
verification samples built under various conditions.

An overview of mirai-toushi is shown in Fig-
ure 3. We first identify XOR keys used to encrypt
passlist/table, and then decrypt configs. It is obvi-
ous that passlists are used for login attempts in Telnet
scans. On the other hand, tables can be used for vari-
ous purposes (e.g., C2 domain/port, SR domain/port,
and DoS attack parameter). For this reason, we imple-
mented “reference connector” to identify where tables
are used.

4.2 Implementation
We implemented a cross-architecture Mirai config ex-
tractor utilizing Ghidra [14] decompiler and intermedi-
ate representation P-Code. Ghidra is an open source
reverse engineering tool released by National Security
Agency (NSA), and analysis can be automated using
Ghidra Script in Java/Python. Ghidra performs de-
compilation in a multi-stage process. It first converts
binary to assembly, and then converts assembly to P-
Code. It decompiles based on P-Code and generates
pseudo-code in C. Since P-Code and decompiled C code
are not architecture-dependent representations, it al-
lows us to develop the cross-architecture tool.

A comparison of mirai-toushi and existing tools
is shown in Table 1. mirai-toushi supports 8 archi-
tectures: ARM, MC68000, MIPS, PowerPC, SPARC,
SuperH4, x86, and x86_64. In addition, no manual
work is required when running it and full automation
is achieved.

The implementation of each mirai-toushi feature is
described below.

Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor 3

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

Table 1: Mirai config extractor.
Reversing Tool Supported Arch Passlist Table Automation

decrypting-mirai-configuration- Radare2 x86 ✓
with-radare2 [11]
mirai_string_deobfuscation [12] Binary Ninja ARM ✓
miraicfg [13] Radare2 ARM, x86 ✓ ✓
mirai-toushi [15] Ghidra ARM, MC68000, MIPS, PowerPC, ✓ ✓ ✓

SPARC, SuperH4, x86, x86_64

Figure 3: Overview of mirai-toushi.

key extractor (scanner): This feature identifies the
XOR key used to encrypt the passlist. In the source
code, the 4-byte XOR key is split into 4 parts and
XORed 4 times. Due to compiler optimization, these
are combined into a single XOR instruction. For this
reason, we obtain the decompiled output of each func-
tion and identify the instruction that recursively per-
form a 1-byte XOR on each byte of data. This 1-byte
is determined to be the XOR key used to encrypt the
passlist.
decoder (scanner): This feature decrypts the passlist
using the identified XOR key. Since the passlist is reg-
istered by add_auth_entry(), we use the decompiled
output to identify where add_auth_entry() is called.
At this time, the number/type of function arguments
may not be interpreted correctly, resulting in incorrect
decompiled output. To handle this issue, we use Ghidra
Script’s updateFunction() to define the function ar-
guments conrrectly and obtain it. The first argument
(username) and the second argument (password) are
decrypted using the identified XOR key. The third
argument (weight) is not encrypted. Therefore, it is
directly converted to a number as plaintext.
key extractor (table): This feature identifies the XOR
key used to encrypt the table. It obtains the P-Code
of each function and retrieves INT_XOR instructions,
which are equivalent to XOR. Since XOR is performed
4 times within the target function, it identifies the func-
tion that contains this process, and retrieves the 4 bytes
that have been XORed. These 4 bytes are determined
to be the XOR key used to encrypt the table.
decoder (table): This feature uses the identified XOR
key to decrypt the table and calculates the ID to be
used in subsequent reference connector. The table is
registered by add_entry(), which is inlined due to

compiler optimization. Therefore, we retrieve the table
from util_memcpy() called within add_entry(). We
use Ghidra Script’s updateFunction() to define the
function arguments correctly and obtain the decom-
piled output. The table data in the second argument
is decrypted using the identified XOR key. Since it
is most likely the port number of C2/SR, the 2-byte
data is decrypted as a numerical value. In addition,
we calculate the ID of each data item. Data is stored
as an array in the table, and the ID serves as an index.
Therefore, the ID can be calculated by subtracting the
address of each data item from the base address of the
table and dividing it by the data size. The size of the
table differed depending on the architecture (Table 2):
6 bytes for MC68000, 8 bytes for other 32-bit architec-
tures, and 16 bytes for x86_64.

id = (data_addr − table_base_addr)/data_size

Table 2: Byte size of table memory allocation.
MC68000 Other 32-bit Arch x86_64

Data Address 4 4 8
Data Length 2 2 2
Padding 0 2 6
Total 6 8 16

1 table_unlock_val(TABLE_CNC_DOMAIN); //
Decryption

2 entries = resolv_lookup(table_retrieve_val(
TABLE_CNC_DOMAIN, NULL)); // Retrieval

3 table_lock_val(TABLE_CNC_DOMAIN); // Re-
Encryption

Figure 4: Retrieval of table.

4 Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

reference connector: This feature identifies the func-
tion/address from which data in the table is retrieved.
Data is retrieved by table_retrieve_val() (Fig-
ure 4). Thus, the decompiled output of each function
are obtained to identify where table_retrieve_val()
is called. Since the ID is passed as the first argument, it
can be matched with the values calculated by decoder
(table) to identify which function/address the data is
referenced from.

The analysis results are output in JSON format.
Figure 5 shows an example of a passlist output, and
Figure 6 shows an example of a table output. Both
encrypted configs are decrypted, and the table output
includes reference connector result in “refs”.

1 {
2 "add_auth_entry_func": {
3 "name": "add_auth_entry",
4 "entrypoint": "0804f8d0",
5 "scanner_key": "0x22"
6 },
7 "scanner_init_func": {
8 "name": "scanner_init",
9 "entrypoint": "0804fa20",

10 "auth_tables_sha256": "0e60e37e94...",
11 "auth_tables_count": 23,
12 "auth_tables": [
13 {
14 "user": "root",
15 "pass": "admin",
16 "weight": 8
17 },
18 {
19 "user": "admin",
20 "pass": "admin",
21 "weight": 7
22 },

Figure 5: Example of passlist output.

1 {
2 "table_lock_val_func": {
3 "name": "table_lock_val",
4 "entrypoint": "08050f80",
5 "table_key": "0x22",
6 "table_original_key": "0xdeadbeef"
7 },
8 "table_init_func": {
9 "name": "table_init",

10 "entrypoint": "08051080",
11 "tables_sha256": "5c4a784a20...",
12 "tables_count": 50,
13 "tables_int_count": 2,
14 "tables_str_count": 48,
15 "tables": [
16 {
17 "id": 3,
18 "type": "str",
19 "str_data": "example.com",
20 "table_addr": "080565d8",
21 "refs": [
22 {
23 "func": "resolve_cnc_addr",
24 "addr": "0804e552"
25 }
26]
27 },
28 {
29 "id": 4,
30 "type": "int",
31 "int_data": 23,
32 "table_addr": "080565e0",
33 "refs": [
34 {
35 "func": "resolve_cnc_addr",
36 "addr": "0804e5a9"
37 }
38]
39 },

Figure 6: Example of table output.

4.3 Tuning
We collected cross-compilers that could be used to
build Mirai, and used these to build verification sam-
ples from the source code of Mirai and its variants. We
then applied our tool to the verification samples and
improved the accuracy until it could extract configs
correctly.

4.3.1 Collecting cross-compiler

Existing researches [44, 45] have shown that most of
cross-compilers in actual use are pre-built toolchains
available on the Internet. We investigated the source
code of Mirai and its variants published on GitHub
and collected cross-compilers that may have actually
been used. Out of the 213 source codes, 115 included
references to the toolchain, but ultimately, only 4 dis-
tinct types of toolchains [46, 47, 48, 49] were identified.
From the toolchains, we collected cross-compilers (gcc)
for 8 architectures supported by mirai-toushi. At this
time, we collected all versions of the compilers when
multiple versions of a compiler existed for the same
architecture. Finally, 54 types of cross-compilers were
collected.

4.3.2 Building verification malware

Using the collected cross-compilers, we built verifica-
tion samples from the source code of the original Mirai
and 3 Mirai variants with different XOR keys:

� MIRAI (0xdeadbeef/0x22)

� Akiru (0xdf7ecadf/0xb4)

� SORA (0xdedefbaf/0x54)

� WICKED (0x1337c0d3/0x37)

We built both samples with and without symbol infor-
mation. We first built the unstripped samples using
gcc command of each cross-compiler, and then built
the stripped samples using strip command. Finally,
370 types of verification samples were output.

4.3.3 Applying to verification malware

We improved the accuracy of our tool using verification
samples. The tool was applied to the verification sam-
ples, and in cases where configs were not extracted cor-
rectly, we modified the tool. By repeating this process,
we ultimately confirmed that configs could be correctly
extracted from 364 out of the 370 samples, excluding
6 samples that failed to be analyzed by Ghidra.

5 Experiment
To evaluate the effectiveness of the tool against real-
world malware, we applied mirai-toushi [15] and mi-
raicfg [13], which can automatically analyze them, to
real-world samples collected from honeypots and IPS.

Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor 5

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

Table 3: Dataset of real-world malware.
Dataset System Period # Malware
IoTPOT Dataset D Honeypot 05/21/2020–12/31/2022 1,000
IoTPOT Dataset E Honeypot 01/01/2023–12/31/2023 1,000
IIJ-MALWARE Honeypot, IPS 03/21/2024–05/31/2024 426

5.1 Dataset
In this experiment, we used real-world samples col-
lected from Yokohama National University’s honeypot
IoTPOT [8, 9] and “IIJ-MALWARE” collected from
IIJ’s honeypot [7] and IPS (Table 3). Regarding IoT-
POT, we used Dataset D (collected from May 21, 2020
to December 31, 2022) and Dataset E (collected from
January 1, 2023 to December 31, 2023). Regarding IIJ-
MALWARE, we used samples collected from March 21,
2024 to May 31, 2024.

Since static analysis cannot be performed correctly
on packed malware, it must be unpacked before analy-
sis. We identified packers using Detect-It-Easy [50] and
confirmed that the majority were UPX [51]. In some
malware, l_info/p_info headers are set to incorrect
values, which causes the unpacking process with upx
command to fail [52]. To handle these malformed head-
ers, we first restored them to the correct headers and
then unpacked them using upx command.

The collected samples included non-Mirai variants,
and even Mirai samples may not contain configs en-
crypted with a 1-byte XOR. Therefore, we filtered
out the samples in advance that may not contain
XOR configs. To filter the samples, we used the
YARA rule based on the original Mirai source code.
Specifically, we filtered the samples to those that con-
tained at least one type of passlist/table signatures en-
crypted with a 1-byte XOR (0x01 to 0xFF). We used 5
passlist signatures (root, admin, default, user, and
pass) and 5 table signatures (/proc, shell, enable,
/bin/busybox, and Mozilla). It is important to
note that the signature of either the passlist or ta-
ble may match that of the other in a malware; there-
fore, the filtered samples do not necessarily contain
both. The YARA rule filtered the samples, leaving
78% of unpacked samples for IoTPOT and 42% for
IIJ-MALWARE.

Regarding IoTPOT Dataset D/E, we randomly se-

lected 1,000 samples from the filtered samples. As for
IIJ-MALWARE, we selected all 426 filtered samples.

5.2 Applying to real-world malware
The result of applying mirai-toushi/miraicfg to 2,426
samples is shown in Table 4. In the case of mirai-toushi,
we also listed the “Passlist ||Table” column, showing
the number of samples with at least one of the passlist
or table extracted. Since malware may contain only
one of them, we included this information.

The result indicates that mirai-toushi extracted a
significantly higher number of configs than miraicfg.
For mirai-toushi, it extracted 1,641 passlists (68%),
and 1,743 tables (72%). On the other hand, miraicfg
extracted 673 tables (28%). In addition, when compar-
ing the number of tables extracted from each dataset,
mirai-toushi extracted more in all datasets. However,
we observed that the number of extractions was low for
IIJ-MALWARE. This cause will be discussed in Sec-
tion 6.1.

The difference in the number of extracted configs
between miraicfg and mirai-toushi is due to the dif-
ference in the number of supported architectures. mi-
raicfg only supports 2 architectures: ARM (948 sam-
ples) and x86 (243 samples). It cannot be run on other
architectures (1,240 samples). On the other hand,
mirai-toushi supports 8 architectures, and can be run
on 2,409 out of 2,426 samples (Table 5). The archi-
tectures of the remaining 17 samples were AArch64 (8
samples) and ARC (9 samples). AArch64 is an archi-
tecture that we could not be observed from the source
code of Mirai variants leaked on GitHub. This rare
case reveals that, although limited in number, AArch64
malware exists in the wild. ARC is an architecture that
not supported by Ghidra, and mirai-toushi could not
support it. However, we confirmed that ARC malware
is less common than malware for other architectures.

Table 4: Number of extracted config against real-world malware.
mirai-toushi [15] miraicfg [13]

Passlist Table Passlist ||Table Table
IoTPOT Dataset D (1,000) 862 808 958 339
IoTPOT Dataset E (1,000) 662 726 884 284
IIJ-MALWARE (426) 117 209 247 50
Total (2,426) 1,641 1,743 2,089 673

Table 5: Number of extracted config using mirai-toushi by architecture.
AArch64 ARC ARM MC68000 MIPS PowerPC SPARC SuperH4 x86 x86_64

(8) (9) (948) (215) (476) (251) (15) (220) (243) (41)
Passlist 0 0 657 161 326 175 3 146 166 7
Table 0 0 609 178 366 198 14 158 210 10
Passlist ||Table 0 0 815 195 409 224 14 196 223 13

6 Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

5.3 Extracted config
We explain configs extracted by mirai-toushi in this
section.
Passlist: 1,641 passlists were extracted in the ex-
periment. We found some differences when compared
to the passlists included in the original Mirai. The
original contains many passlists targeting IP cameras
and DVRs. Meanwhile, real-world malware also con-
tained passlists targeting other types of devices: mo-
bile routers, DSL modems, and ONUs. Moreover, we
found notable passlists targeting automatic dog feed-
ers, smart plugs, and smart UPSes.
Botnet name: A botnet name is a string used to iden-
tify a botnet. In Mirai, it is determined by the string
MIRAI in commands like /bin/busybox MIRAI, which
are executed post-login via a Telnet scan. 1,577 bot-
net names were identified from 1,743 tables. The most
frequently extracted botnet names were SORA, LZRD,
MIRAI, UNSTABLE, and DEMONS.
Port number: 2,355 numerical data were identified
from 1,743 tables. In the original Mirai, numerical
data is used for the port numbers of C2/SR. There-
fore, it is likely that numerical data is also used for
these ports in real-world malware. The total number
of the ports with values of 1024 or greater was 2,236
(95%). This means that most of the ports were within
the ephemeral port range.

In addition, the top 10 most frequently extracted
ports totaled 1,267 (54%), with the top 10 accounting
for more than half of the total. The top 10 ports are
shown in Table 6. We also found that 9 of the top 10
ports matched those used in the source code of Mirai
variants leaked on GitHub. (If the port was confirmed
in multiple source codes, we listed one of the Mirai
variant names in the “Mirai Variant” column.) This
means that in real-world malware, the settings in the
code are often unchanged, leading to the reuse of ports.

Table 6: Top 10 port number.
Port Usage Mirai Variant

314 3912 SR Cosmic-Mirai
312 1312 C2 Cosmic-Mirai
152 9555 SR Condi-Boatnet
152 3778 C2 Condi-Boatnet
76 17661 ? ?
56 1982 SR Joker-Mirai
53 39284 SR BeastMode V
52 34712 SR Amari_Mirai_V2
52 17244 SR DRACO_1.9_PRIVATE_HYBRID
48 45 C2 Amari_Mirai_V2

Domain/IP address: 621 domains and 136 IP
addresses were identified from 1,743 tables. This
shows that in real-world malware, domains/IP ad-
dresses are often not included in tables, compared
to port numbers. In some Mirai variants, we
found the C2 domain/IP address is written in the
resolve_cnc_addr() with plain text, rather than in
the table.
Exploit code: The original Mirai only has a Telnet
scanner, while recent Mirai variants may include scan-

ners that use exploit code. We confirmed that some
variants contain exploit code in the tables. As an ex-
ample, Mirai variant DEMONS contained exploit code
targeting a vulnerability in NVMS-9000 DVR.

6 Discussion

6.1 Extraction failure
The result in Section 5.2 confirmed that the number
of configs extracted from IIJ-MALWARE was particu-
larly low. The main reason is that IIJ-MALWARE con-
tains many samples built with compiler’s optimization
level other than O3 (mainly Mirai variant MIORI). In
Mirai variant source codes examined in Section 4.3.1,
the optimization level was set to O3 for all except one.
Therefore, we built verification samples with O3 and
tuned our tool. As a result, non-O3 optimization lev-
els were not taken into consideration. We handled this
issue after the experiment, and the update will be de-
scribed in Section 7.2.

In the result of mirai-toushi for each architecture,
the lowest extraction rate was x86_64. As for x86_64
malware, 32 out of 41 were IIJ-MALWARE, the ex-
traction rate decreased due to the strong impact of the
optimization level, as mentioned above.

6.2 Difference between architectures
Among the samples in the dataset, there were differ-
ences in whether they were packed depending on the
architecture. Specifically, none of the samples for ARC
(9 samples), MC68000 (215 samples), SPARC (15 sam-
ples), and SuperH4 (220 samples) were packed. It is
considered to be a consequence of UPX, which does not
support packing of ELF files for these architectures.

There were also differences in whether malware
was stripped. 282 out of 2,426 samples were not
stripped, and 245 of these were ARM malware. It is
assumed to result from the effects of the ARM cross-
compilers. During the build of the verification samples
in Section 4.3.2, we observed compile errors occurred
when using strip command with some ARM cross-
compilers. This suggests that the high number of un-
stripped ARM malware is likely due to the influence of
the cross-compilers.

In this way, it became clear that the influence of
packers and cross-compilers can cause differences in bi-
naries depending on the architecture. The difficulty of
static analysis varies depending on whether packing or
stripping. To facilitate the analysis of malware bina-
ries, it is important to develop tools compatible with
cross-architectures.

6.3 Limitation
mirai-toushi is not an effective tool against non-Mirai
malware. Even for Mirai, it may fail to extract in-
formation if the encryption algorithm, compiler, and
optimization level are different. In fact, specific Mirai

Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor 7

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

variants, which do not use 1-byte XOR for encryption,
are observed nowadays [53, 54].

Furthermore, this tool takes longer to execute than
existing tools, which creates limitations when analyz-
ing a large number of malware binaries. Specifically,
the execution time of miraicfg per malware is 2-3 sec-
onds, whereas mirai-toushi takes approximately 50 sec-
onds. The reasons it takes time to execute are that the
decompilation results are used and reference connec-
tor, which is not available in existing tools, has been
implemented.

6.4 Non-Mirai malware
As an exception, we confirmed cases where configs
could be extracted from non-Mirai malware. In the
P2P botnet Mozi collected by IIJ’s IPS, mirai-toushi
extracted the table with the same content as the origi-
nal Mirai. This is because Mozi contains part of Mirai
source code. In the result of reference connector, DoS
attack parameters were retrieved within the malware,
but no other items were retrieved. This suggests that
C2/SR addresses are not actually used, since the com-
munication protocol is P2P.

7 Release
The version of mirai-toushi [15] used in the experiment
was first released on GitHub. We then updated it as
described in Section 7.2.

7.1 Usage
mirai-toushi can be run without additional settings or
libraries in an environment where Ghidra is installed.
It can be run using Jython interpreter executed from
Ghidra GUI or Headless analyzer executed from CUI.

Extracted configs can be used for various pur-
poses. For example, it is possible to guess devices tar-
geted by malware from passlists, or to use domains,
IP addresses, and port numbers of C2/SR extracted
from tables as IoC. In addition, mirai-toushi calculates
SHA256 hash values of extracted passlists and tables.
This makes it possible to identify whether the malware
has the same config from the hash value, even if the
malware is from a different architecture. It may also
be possible to use unknown hash values to detect new
Mirai variants.

7.2 Update
mirai-toushi consists of only 2 Python codes for ex-
tracting passlists and tables. Although it supports 8
architectures, it contains little architecture-dependent
code. This makes it easier to update the tool compared
to existing tools, which require code to be developed
for each architecture.

In Section 6.1, we found mirai-toushi does not work
well with non-O3 malware. We updated mirai-toushi
so that it can correctly extract configs even from such

malware. As we applied the updated version to IIJ-
MALWARE (426 samples), the number of extracted
passlists increased from 117 to 179, and the number of
tables increased from 209 to 293.

In Section 5.3, we found some Mirai variants store
the C2 address in resolve_cnc_addr(). We devel-
oped additional script (parse_main.py) so that it can
extract this C2 address. Figure 7 shows an example
of parse_main.py result. Since different malware has
different DoS attack functions, we have made it possi-
ble to extract information about DoS attack functions
using this script.

1 {
2 "main_func": {
3 "name": "main",
4 "entrypoint": "0804df60"
5 },
6 "resolve_cnc_addr_func": {
7 "name": "resolve_cnc_addr",
8 "entrypoint": "0804dc40",
9 "cnc": "192.0.2.1"

10 },
11 "attack_init_func": {
12 "name": "attack_init",
13 "entrypoint": "0804a630",
14 "attacks_count": 5,
15 "attacks": [
16 {
17 "vector": 0,
18 "name": "attack_tcp_syn",
19 "entrypoint": "0804b530"
20 },
21 {
22 "vector": 1,
23 "name": "attack_tcp_ack",
24 "entrypoint": "0804af90"
25 },

Figure 7: Example of parse_main.py output.

7.3 Ethical consideration
There is a risk that releasing our paper/tool could al-
low attackers to take countermeasures. However, Mi-
rai source code itself has already been leaked, and the
encryption algorithm is well-known simple XOR. Al-
though there are limitations such as a small number
of supported architectures, tools for extracting configs
already exist, and we have released a more practical
tool. For this reason, we believe that the benefits of
widespread use by security researchers outweigh the
disadvantage.

8 Conclusion
In this study, we developed a cross-architecture Mirai
config extractor called “mirai-toushi” utilizing Ghidra
decompiler and intermediate representation P-Code.
We applied mirai-toushi to real-world malware, and
found that the number of configs extracted was sig-
nificantly higher than the existing tool, showing the
effectiveness of our tool. To be widely used, we have
made mirai-toushi publicly available on GitHub.

mirai-toushi is basically an effective tool against
Mirai, which uses 1-byte XOR encryption for its con-
figs. Therefore, our future challenge will be to develop
a general-purpose IoT malware config extractor that

8 Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

is not dependent on any specific malware/encryption
algorithm.

Acknowledgment: We would like to thank the IoT-
POT team at Yokohama National University’s Yosh-
ioka Laboratory for providing the IoT malware dataset.

Author details
Shun Morishita
Internet Initiative Japan Inc.
Iidabashi Grand Bloom 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, JAPAN
morishita-sh@iij.ad.jp

Satoshi Kobayashi
Internet Initiative Japan Inc.
Iidabashi Grand Bloom 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, JAPAN
satoshi-k@iij.ad.jp

Eisei Hombu
Internet Initiative Japan Inc.
Iidabashi Grand Bloom 2-10-2 Fujimi, Chiyoda-ku,
Tokyo 102-0071, JAPAN
eisei@iij.ad.jp

References
[1] T. Micro, “Iot botnet linked to large-scale

ddos attacks since the end of 2024.” https:
//www.trendmicro.com/en_us/research/25/a/
iot-botnet-linked-to-ddos-attacks.html.
last accessed 2025/04/02.

[2] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H.
Nguyen, “A survey of iot malware and detection
methods based on static features,” ICT express,
vol. 6, no. 4, pp. 280–286, 2020.

[3] R. Tanabe, T. Tamai, A. Fujita, R. Isawa,
K. Yoshioka, T. Matsumoto, C. Gañán, and
M. Van Eeten, “Disposable botnets: examining
the anatomy of iot botnet infrastructure,” in Pro-
ceedings of the 15th International Conference on
Availability, Reliability and Security, pp. 1–10,
2020.

[4] JPCERTCC, “Malconfscan.” https://github.
com/JPCERTCC/MalConfScan. last accessed
2025/04/02.

[5] kevoreilly, “Capev2.” https://github.com/
kevoreilly/CAPEv2. last accessed 2025/04/02.

[6] c3rb3ru5d3d53c, “mwcfg.” https://github.
com/c3rb3ru5d3d53c/mwcfg. last accessed
2025/04/02.

[7] M. Saito and T. Kobayashi, “Mitf honeypot sup-
port for iot devices,” Internet Infrastructure Re-
view (IIR), vol. 36, pp. 10–15, 2017.

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Mat-
sumoto, T. Kasama, and C. Rossow, “Iotpot:
analysing the rise of iot compromises,” in 9th
USENIX Workshop on Offensive Technologies
(WOOT 15), 2015.

[9] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Mat-
sumoto, T. Kasama, and C. Rossow, “Iotpot: A
novel honeypot for revealing current iot threats,”
Journal of Information Processing, vol. 24, no. 3,
pp. 522–533, 2016.

[10] abuse.ch, “Malwarebazaar - user elfdigest.”
https://bazaar.abuse.ch/user/5877/. last ac-
cessed 2025/04/02.

[11] 0xd3xt3r, “decrypting-mirai-configuration-
with-radare2.” https://github.com/
0xd3xt3r/blog-code/blob/master/
decrypting-mirai-configuration-with-radare2.
last accessed 2025/04/02.

[12] mrphrazer, “mirai_string_deobfuscation.”
https://github.com/mrphrazer/mirai_
string_deobfuscation. last accessed
2025/04/02.

[13] FernandoDoming, “miraicfg.” https://github.
com/FernandoDoming/miraicfg. last accessed
2025/04/02.

[14] N. S. Agency, “Ghidra.” https://ghidra-sre.
org/. last accessed 2025/04/02.

[15] IIJ, “mirai-toushi.” https://github.com/iij/
mirai-toushi. last accessed 2025/04/02.

[16] M. De Donno, N. Dragoni, A. Giaretta, and
A. Spognardi, “Ddos-capable iot malwares: com-
parative analysis and mirai investigation,” Se-
curity and Communication Networks, vol. 2018,
no. 1, p. 7178164, 2018.

[17] R. Vishwakarma and A. K. Jain, “A survey of
ddos attacking techniques and defence mecha-
nisms in the iot network,” Telecommunication sys-
tems, vol. 73, no. 1, pp. 3–25, 2020.

[18] A. Davanian, A. Darki, and M. Faloutsos,
“Cnchunter: An mitm-approach to identify live
cnc servers,” Black Hat USA, 2021.

[19] A. Davanian and M. Faloutsos, “Malnet: A
binary-centric network-level profiling of iot mal-
ware,” in Proceedings of the 22nd ACM Internet
Measurement Conference, pp. 472–487, 2022.

[20] A. Davanian, M. Faloutsos, and M. Lindorfer,
“C2miner: Tricking iot malware into revealing live
command & control servers,” in Proceedings of
the 19th ACM Asia Conference on Computer and
Communications Security, pp. 112–127, 2024.

Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor 9

mailto:morishita-sh@iij.ad.jp
mailto:satoshi-k@iij.ad.jp
mailto:eisei@iij.ad.jp
https://www.trendmicro.com/en_us/research/25/a/iot-botnet-linked-to-ddos-attacks.html
https://www.trendmicro.com/en_us/research/25/a/iot-botnet-linked-to-ddos-attacks.html
https://www.trendmicro.com/en_us/research/25/a/iot-botnet-linked-to-ddos-attacks.html
https://github.com/JPCERTCC/MalConfScan
https://github.com/JPCERTCC/MalConfScan
https://github.com/kevoreilly/CAPEv2
https://github.com/kevoreilly/CAPEv2
https://github.com/c3rb3ru5d3d53c/mwcfg
https://github.com/c3rb3ru5d3d53c/mwcfg
https://bazaar.abuse.ch/user/5877/
https://github.com/0xd3xt3r/blog-code/blob/master/decrypting-mirai-configuration-with-radare2
https://github.com/0xd3xt3r/blog-code/blob/master/decrypting-mirai-configuration-with-radare2
https://github.com/0xd3xt3r/blog-code/blob/master/decrypting-mirai-configuration-with-radare2
https://github.com/mrphrazer/mirai_string_deobfuscation
https://github.com/mrphrazer/mirai_string_deobfuscation
https://github.com/FernandoDoming/miraicfg
https://github.com/FernandoDoming/miraicfg
https://ghidra-sre.org/
https://ghidra-sre.org/
https://github.com/iij/mirai-toushi
https://github.com/iij/mirai-toushi

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

[21] S. Torabi, E. Bou-Harb, C. Assi, E. B. Karbab,
A. Boukhtouta, and M. Debbabi, “Inferring and
investigating iot-generated scanning campaigns
targeting a large network telescope,” IEEE Trans-
actions on Dependable and Secure Computing,
vol. 19, no. 1, pp. 402–418, 2020.

[22] A. A. Al Alsadi, K. Sameshima, J. Bleier, K. Yosh-
ioka, M. Lindorfer, M. Van Eeten, and C. H.
Gañán, “No spring chicken: quantifying the lifes-
pan of exploits in iot malware using static and dy-
namic analysis,” in Proceedings of the 2022 ACM
on Asia conference on computer and communica-
tions security, pp. 309–321, 2022.

[23] A. A. Al Alsadi, K. Sameshima, K. Yoshioka,
M. Van Eeten, and C. H. Gañán, “Bin there, tar-
get that: Analyzing the target selection of iot vul-
nerabilities in malware binaries,” in Proceedings
of the 26th International Symposium on Research
in Attacks, Intrusions and Defenses, pp. 513–526,
2023.

[24] M. Wang, J. Santillan, and F. Kuipers, “Thing-
pot: an interactive internet-of-things honeypot,”
arXiv preprint arXiv:1807.04114, 2018.

[25] S. Kato, R. Tanabe, K. Yoshioka, and T. Mat-
sumoto, “Adaptive observation of emerging cy-
ber attacks targeting various iot devices,” in
2021 IFIP/IEEE International Symposium on In-
tegrated Network Management (IM), pp. 143–151,
IEEE, 2021.

[26] D. Uhrıcek, “Lisa–multiplatform linux sandbox for
analyzing iot malware,” 2020.

[27] A. Darki and M. Faloutsos, “Riotman: a system-
atic analysis of iot malware behavior,” in Pro-
ceedings of the 16th International Conference on
emerging Networking EXperiments and Technolo-
gies, pp. 169–182, 2020.

[28] F. Bellard, “Qemu, a fast and portable dynamic
translator.,” in USENIX annual technical con-
ference, FREENIX Track, pp. 41–46, California,
USA, 2005.

[29] T. Q. P. Developers, “Qemu.” https://www.
qemu.org/. last accessed 2025/04/02.

[30] Q. F. project, “Qiling framework.” https://
qiling.io/. last accessed 2025/04/02.

[31] GDATAAdvancedAnalytics, “Qiliot.” https://
github.com/GDATAAdvancedAnalytics/Qiliot.
last accessed 2025/04/02.

[32] T. Ljucovic, “Destructive iot malware em-
ulation –part 1 of 3 –environment setup.”
https://cyber.wtf/2024/03/28/destructive-iot-
malware-emulation-part-1-of-3-environment-
setup/. last accessed 2025/04/02.

[33] D. Stevens, “Xorsearch & xorstrings.”
https://blog.didierstevens.com/programs/
xorsearch/. last accessed 2025/04/02.

[34] decalage2, “Balbuzard.” https://github.com/
decalage2/balbuzard. last accessed 2025/04/02.

[35] srozb, “mirai-utils.” https://github.com/
srozb/mirai-utils. last accessed 2025/04/02.

[36] radare org, “Radare2.” https://rada.re/. last
accessed 2025/04/02.

[37] V. 35, “Binary ninja.” https://binary.ninja/.
last accessed 2025/04/02.

[38] Y. Liu and H. Wang, “Tracking mirai variants,”
Virus Bulletin, pp. 1–18, 2018.

[39] Hex-Rays, “Ida pro.” https://hex-rays.com/
ida-pro. last accessed 2025/04/02.

[40] U. engine project, “Unicorn.” https://www.
unicorn-engine.org/. last accessed 2025/04/02.

[41] jgamblin, “Mirai-source-code.” https://github.
com/jgamblin/Mirai-Source-Code. last ac-
cessed 2025/04/02.

[42] M. Saito, M. Negishi, T. Kobayashi, T. Na-
gao, H. Suzuki, M. Kobayashi, H. Nashiwa,
M. Kobayashi, and Y. Suga, “Mirai botnet de-
tection and countermeasures,” Internet Infrastruc-
ture Review (IIR), vol. 33, pp. 4–29, 2016.

[43] M. Antonakakis, T. April, M. Bailey, M. Bern-
hard, E. Bursztein, J. Cochran, Z. Durumeric,
J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al., “Understanding the mirai botnet,” in 26th
USENIX security symposium (USENIX Security
17), pp. 1093–1110, 2017.

[44] S. Akabane and T. Okamoto, “Identification of
library functions statically linked to linux mal-
ware without symbols,” Procedia Computer Sci-
ence, vol. 176, pp. 3436–3445, 2020.

[45] S. Akabane and T. Okamoto, “Identification of
toolchains used to build iot malware with stat-
ically linked libraries,” Procedia Computer Sci-
ence, vol. 192, pp. 5130–5138, 2021.

[46] E. Andersen, “uclibc toolchain 0.9.30.1.”
https://www.uclibc.org/downloads/
binaries/0.9.30.1/. last accessed 2025/04/02.

[47] ibiblio, “Slitaz.” http://distro.ibiblio.org/
slitaz/sources/packages/c/. last accessed
2025/04/02.

[48] R. Landley, “Aboriginal linux 1.2.6.”
https://landley.net/aboriginal/downloads/
old/binaries/1.2.6/. last accessed 2025/04/02.

[49] R. Landley, “Aboriginal linux 1.4.5.”
https://landley.net/aboriginal/downloads/
old/binaries/1.4.5/. last accessed 2025/04/02.

10 Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor

https://www.qemu.org/
https://www.qemu.org/
https://qiling.io/
https://qiling.io/
https://github.com/GDATAAdvancedAnalytics/Qiliot
https://github.com/GDATAAdvancedAnalytics/Qiliot
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://github.com/decalage2/balbuzard
https://github.com/decalage2/balbuzard
https://github.com/srozb/mirai-utils
https://github.com/srozb/mirai-utils
https://rada.re/
https://binary.ninja/
https://hex-rays.com/ida-pro
https://hex-rays.com/ida-pro
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://www.uclibc.org/downloads/binaries/0.9.30.1/
https://www.uclibc.org/downloads/binaries/0.9.30.1/
http://distro.ibiblio.org/slitaz/sources/packages/c/
http://distro.ibiblio.org/slitaz/sources/packages/c/
https://landley.net/aboriginal/downloads/old/binaries/1.2.6/
https://landley.net/aboriginal/downloads/old/binaries/1.2.6/
https://landley.net/aboriginal/downloads/old/binaries/1.4.5/
https://landley.net/aboriginal/downloads/old/binaries/1.4.5/

The Journal on Cybercrime & Digital Investigations, Vol. 10, No. 1, Jun. 2025

[50] horsicq, “Detect-it-easy.” https://github.
com/horsicq/Detect-It-Easy. last accessed
2025/04/02.

[51] T. U. Team, “Upx: the ultimate packer for ex-
ecutables.” https://upx.github.io/. last ac-
cessed 2025/04/02.

[52] JPCERTCC, “Anti-upx unpacking technique.”
https://blogs.jpcert.or.jp/en/2022/
03/anti_upx_unpack.html. last accessed
2025/04/02.

[53] H. Wang, Acey9, and Alex.Turing, “Mirai.tbot
uncovered: Over 100 groups and 30,000+ in-
fected hosts in a big iot botnet.” https://blog.
xlab.qianxin.com/mirai-tbot-en/. last ac-
cessed 2025/04/02.

[54] H. Wang, daji, Alex.Turing, and Acey9, “Bot-
nets never die: An analysis of the large scale bot-
net airashi.” https://blog.xlab.qianxin.com/
large-scale-botnet-airashi-en/. last ac-
cessed 2025/04/02.

Shun Morishita, Satoshi Kobayashi, Eisei Hombu, mirai-toushi: Cross-Architecture Mirai Configuration Extractor 11

https://github.com/horsicq/Detect-It-Easy
https://github.com/horsicq/Detect-It-Easy
https://upx.github.io/
https://blogs.jpcert.or.jp/en/2022/03/anti_upx_unpack.html
https://blogs.jpcert.or.jp/en/2022/03/anti_upx_unpack.html
https://blog.xlab.qianxin.com/mirai-tbot-en/
https://blog.xlab.qianxin.com/mirai-tbot-en/
https://blog.xlab.qianxin.com/large-scale-botnet-airashi-en/
https://blog.xlab.qianxin.com/large-scale-botnet-airashi-en/

	Introduction
	Related work
	Mirai config
	Passlist
	Table

	mirai-toushi
	Overview
	Implementation
	Tuning
	Collecting cross-compiler
	Building verification malware
	Applying to verification malware

	Experiment
	Dataset
	Applying to real-world malware
	Extracted config

	Discussion
	Extraction failure
	Difference between architectures
	Limitation
	Non-Mirai malware

	Release
	Usage
	Update
	Ethical consideration

	Conclusion

