
THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 9, NO. 1, APR. 2024

GenRex Demonstration:
Level Up Your Regex Game

Dominika Regéciová
Gen Digital

Abstract

GenRex is a unique tool for detecting simi-
larities in artifacts from executable files and the
generation of regular expressions.

This paper demonstrates how to use Gen-
Rex to maximize the usage of regular expres-
sions automatically created from behavioral re-
ports and other potential use cases.

GenRex is open-sourced, and additional re-
sources, such as a dataset of behavioral reports
and an extension to the YARA tool, are provided.

Keywords: GenRex, malware detection, pattern
matching, regular expressions, YARA.

1 Introduction

GenRex was first introduced in the 2023 IEEE 22nd In-
ternational Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom) in the
paper GenRex: Leveraging Regular Expressions for Dy-
namic Malware Detection [1]. The paper presented a
deep dive into the internals of this tool, as well as the
results of experiments, which demonstrated that Gen-
Rex is a relatable instrument for regular expression
generation.

At Botconf, the main focus is to show how GenRex
can be used in practice by malware analysts and by
others who have a long list of strings with some level
of similarities, such as named objects created by mal-
ware.

2 GenRex

GenRex is available online on the GitHub page: https:
//github.com/avast/genrex, where the instructions
for installation and usage can be found.

GenRex is a Python library that can be used, as
shown in Figure 1.

import genrex

results = genrex.generate(

input_type=genrex.InputType.MUTEX ,

source ={

"source1": [

"aabcmalware7992",

"adeemalware3022",

"aefdmalware1896"],

"source2": [

"bfbcmalware5996",

"bbcamalware4508"],

})

print("Results:")

for result in results:

print(result)

Figure 1: GenRex example

Figure 2: Model architecture for GenRex

The input processing for the results will be briefly
explained, split into several logical steps, as illustrated
in Figure 2.

Dominika Regéciová, GenRex Demonstration: Level Up Your Regex Game 15

https://github.com/avast/genrex
https://github.com/avast/genrex

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 9, NO. 1, APR. 2024

This will help the users understand how the results
were created, which could help them to evaluate the
quality of the results.

The input is defined as a list of inputs and their re-
sources and their type (mutex, register, etc.). The rea-
son is that both pieces of information are influencing
the evaluation.

Domain-specific preprocessing is the first step,
where stings are converted to a more general format
that would be more usable in YARA rules and other
use cases. The usernames should be removed, for
example, as they are too specific. Strings containing
only GUID are also not suitable, as they are similar to
hashes - unique to each sample.

The clustering phase emphasizes speed rather
than precision. The similarity based on n-grams was
used. The length of n-grams is calculated from in-
put, and based on created clusters, we obtain statis-
tical information that can be used for detection. In
the presented example, one cluster containing all in-
put strings is created, detecting the common middle
part of the mutexes.

Figure 3: The prefix tree

For each cluster, a set of similar strings, a prefix trie
is created. To detect similar subparts of these strings,
the n-gram that leads to the cluster creation is used.

Then, the rest of the trie ismade to detect the common
parts not only for prefixes (as a character a on the pic-
ture) but also parts in the middle of strings. The trie is
then minimized, improving the detection of common
parts even further, as demonstrated in Figure 3.

Then, two matrices are created – one for each trie
state and the second for the final states. With the sim-
plified Brzozowski algebraic method, the trie is trans-
formed into a set of equations. By solving them, an in-
ternal representation of regular expressions is created
using two operations – concatenation and union.

for n = number_of_states decreasing to 1:

for i = 1 to n:

B[i] += A[i,n] . B[n]

for j = 1 to n:

A[i,j] += A[i,n] . A[n,j]

Figure 4: Brzozowski algebraic method

The last step is domain-specific optimization
heuristics, which ties everything together. The aim is
to create readable, effective, and usable results.

An example of the result is shown here. The com-
mon part was detected, as well as variable prefixes
and suffixes. The result was generalized based on the
nature of the input. These results, with statistical infor-
mation from clusters, can be used for automatic YARA
rules generation and many other tasks. More details
about the algorithm and each step can be found in the
previously mentioned paper [1].

Results:

Regex: (^|\\) [0-9a-f]{4} malware [0 -9]{4}$

Ngram: malware

Unique: 5

Min: 2

Max: 3

Average: 2.5

Resources: ['aabcmalware7992 ',

'adeemalware3022 ', 'aefdmalware1896 ',

'bbcamalware4508 ', 'bfbcmalware5996 ']

Originals: []

Named object type: mutex

Hashes: ['source1 ', 'source2 ']

Figure 5: The resulting regular expression

3 Demonstration

Themain focuswill be a practical demonstration of the
GenRex on an experimental dataset of behavioral re-
ports. Publicly available resources will be introduced,
as well as illustrations of their usage.

3.1 YARA

YARA1 is a tool for pattern detection, widely used in
threat intelligence.

In so-called YARA rules, malware can be described
based on both static characteristics and its behav-
ior. The dynamic characteristic is evaluated based

1github.com/VirusTotal/yara

16 Dominika Regéciová, GenRex Demonstration: Level Up Your Regex Game

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 9, NO. 1, APR. 2024

on parsing reports from sandboxes and emulators in
JSON format.

This is done through modules—extensions of the
core YARA code that can be easily modified and ex-
panded for the specific needs of users. In this paper,
the Cuckoo module will be discussed, which accepts
reports in JSON format from the Cuckoo sandbox, a
commonly used sandbox for malware detection2. The
example in Figure 6 shows a simple YARA rule named
malware_mutex:

import "cuckoo"

rule malware_mutex

{

condition:

cuckoo.sync.mutex (/(^|\\) EvilMutex [0-9]$/)

}

Figure 6: An example of a rule in YARA.

This rule contains a function for the Cuckoo mod-
ule that scans the Cuckoo reports to find all samples
that open or create amutexmatching the provided reg-
ular expression.

The prefix (∧|\\) and suffix $ allow us to detect
named objects in a more general form with prefixes.

YARA will accept Cuckoo reports as an argument,
the rule, and the sample in format:
yara -x cuckoo=behavior_report_file rules_file sam-
ple_file.

The sample itself scans the static part of the rules
(called the strings section, missing in our case), while
behavioral conditions are searched in the report. In
both cases, we scan the data without actually running
the samples.

3.2 Extended Cuckoo Module

import "cuckoo"

rule test_cuckoo

{

condition:

cuckoo.genrex.api_call (/ GetProvider /) >= 3 or

cuckoo.genrex.atom(/ rOBDoI /) >= 3 or

cuckoo.filesystem.file_access (/(^|\\) xyc/) or

cuckoo.registry.key_access (/(^|\\) AppXYZ /) or

cuckoo.sync.mutex(/ kzyyjqyi /) >= 1 or

cuckoo.genrex.resolved_api (/xx.dll/) >= 3 or

cuckoo.genrex.semaphore (/ LJpEx8rffiNY /) >= 2

}

Figure 7: An example of YARA rules created based on
the new version of the Cuckoo module.

The extended version of the Cuckoo module will
be used in the following examples. The code is avail-
able online, and contains additional methods and al-
lows testing of how many times the expression was
matched in the report.

An example of a rule is shown in Figure 6. New
methods are named Cuckoo.genrex.named_object,
but this naming can be changed based on the users’
preferences.

3.3 Dataset

For a demonstration of YARA rules generation, a pub-
licly available dataset created by Avast Software and
Czech Technical University was used [2].

The dataset contains behavioral reports from
the CAPEv2 sandbox, one report for each sample.
CAPEv23, or Config And Payload Extraction, is a mal-
ware sandbox derived from Cuckoo. YARA can work
with CAPEv2 reports, as it does with Cuckoo re-
ports. From malware, there are ten families of trojans,
worms, spyware, and bots representing various mal-
ware.

For the newer version, the labeling was updated,
cleanware samples were added, and reports to the
newer version of CAPEv2were re-created, and it is also
available online [3].

To filter so-called clean strings, strings that were
created by the setup of the sandbox, a list of clean
strings from the newer version of the dataset was also
published.

3.4 YARA Rules Generation With GenRex

The GenRex results can be used in automatic YARA
rules creation or updates. To demonstrate the capabil-
ities of GenRex, a selected number of named objects,
such as mutexes, API calls, and resolved APIs were
used.

For each malware family from the dataset, a YARA
rule was created, and then the precision of them was
evaluated. The dataset was split for this purpose in
half – the first half was for creating YARA rules, and
the second was for matching.

To create YARA rules for eachmalware family from
the pre-known dataset, the following process was
used:

1. Select 100 samples that have SSDeep hash sim-
ilarity less than 50 as the input set

2. Create an empty YARA rule

3. Repeat until you cover all samples with the pre-
known dataset, or you can not extend the YARA
rule any further:

(a) Filter clean strings from the input set

(b) Generate regular expressions for each
string category from the input set with Gen-
Rex

2yara.read
thedocs.io/en/stable/modules/cuckoo.html

3github.com/kevoreilly/CAPEv2

Dominika Regéciová, GenRex Demonstration: Level Up Your Regex Game 17

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 9, NO. 1, APR. 2024

(c) Add regular expressions that cover most
samples from the input set and do not
generate false positives in the pre-known
dataset to the YARA rule

(d) Select the samples that did not match the
YARA rule from the pre-known dataset to
the input set

The created rules with additional information can
be found online4.

3.5 Evaluation

To evaluate how precise the created YARA rules are,
they were run over the dataset to calculate the num-
ber of correctly classified malware samples, as well
as incorrectly classified samples. The second case did
not consider whether the YARA rulematched the clean
sample or just a different malware family. The results
can be shown in Table 1.

Table 1: The results of malware families’ detections.
The table shows the true positives and true positive
ratio, the number of correctly matched samples, and
false positives and false positive ratio, meaning the
rule wrongly matches a sample outside of the family
class.

Family TP TPR [%] FP FPR [%]
Adload 665 94.33 0 0
Emotet 13,939 96.63 0 0
HarHar 655 100 0 0
Lokibot 3,700 88.28 2 0.004
njRAT 2,460 73.04 2 0.003
Qakbot 4,857 99.00 0 0
Swisyn 12,571 99.83 1 0.002
Trickbot 3,166 75.33 1 0.002
Ursnif 767 57.41 0 0
Zeus 2,444 94.22 1 0.001

All families 45,224 92.34 7 0.01

The generation of the YARA rules was successful,
with high true positives and low false positives. With
the help of a generation algorithm for YARA rules, Gen-
Rex generated good-quality regular expressions that
led to precise classification.

4 Additional Tips and Tricks

GenRex is relatively easy to use, but there are some is-
sues you can encounter while working with this tool.
The following section will provide tips and tricks to
help you achieve the best results possible.

4.1 Too Short Strings

The first problem you can face is that GenRex is not re-
turning any results at all. Do not panic, as this is com-
pletely good behavior. The goal is not to create regu-
lar expressions for all costs. One of the reasons the

input is not generating regular expressions could be
that the input strings need to be longer. The minimum
string length for GenRex is four characters; shorter
than that, GenRex filters out. While the input ["abc",
"abd", "abz", "aby", "abc"]will not give you any result, the
input ["prefix-abc", "prefix-abd", "prefix-aby", "prefix-abz"]
will result into the regular expression (∧|\\)prefix-ab[a-
z]$.

import genrex

results = genrex.generate(

input_type=genrex.InputType.MUTEX ,

source ={

"hash1": [

"abc",

"abd",

"abz",

"aby",

"abc",

],

})

print("Results:")

for result in results:

print(result)

This will not generate any results

Figure 8: GenRex example: too short strings

import genrex

results = genrex.generate(

input_type=genrex.InputType.MUTEX ,

source ={

"hash1": [

"prefix -abc",

"prefix -abd",

"prefix -abz",

"prefix -aby",

"prefix -abc",

],

})

print("Results:")

for result in results:

print(result)

This example will generate the result

(^|\\) prefix -ab[a-z]$

Figure 9: GenRex example: added prefix

4.2 Why Notate Sources?

Many users in the past had questioned why we need
to have differentiation for the sources of the strings.
You can list all your input strings into one set, but if you
are working withmore sources (typically frommultiple
samples), it can be handy to use this information and
help GenRex create better results.

For example, based on the input from
Figure 1, if you have an additional string
"hello234" in set ["aabcmalware7992", "adeemal-
ware3022","aefdmalware1896", "bfbcmalware5996",

4github.com/regeciovad/GenRex-demo/

18 Dominika Regéciová, GenRex Demonstration: Level Up Your Regex Game

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 9, NO. 1, APR. 2024

"bbcamalware4508", "hello234"], the solely appearance
will not be enough to produce result by itself. How-
ever, if you note that this string is in more than one
source, the importance of this string will be higher,
and it will produce two regular expressions: (∧|\\)[0-
9a-f]4malware[0-9]4$ and (∧|\\)hello234$.

import genrex

results = genrex.generate(

input_type=genrex.InputType.MUTEX ,

source ={

"hash1": [

"aabcmalware7992","adeemalware3022",

"aefdmalware1896","bfbcmalware5996",

"bbcamalware4508","hello234"],

})

print("Results:")

for result in results:

print(result)

This example will generate only the result

(^|\\) [0-9a-f]{4} malware [0 -9]{4}$

Figure 10: GenRex example: only one source

import genrex

results = genrex.generate(

input_type=genrex.InputType.MUTEX ,

source ={

"hash1": [

"aabcmalware7992","adeemalware3022",

"aefdmalware1896", "hello234"],

"hash2": [

"bfbcmalware5996", "bbcamalware4508",

"hello234"],

})

print("Results:")

for result in results:

print(result)

This example will generate both results

(^|\\) [0-9a-f]{4} malware [0 -9]{4}$

and (^|\\) hello234$

Figure 11: GenRex example: two sources

4.3 Test Your Rules

And finally, we advise checking the results before
putting them into the rules. No system is perfect, no re-
sults are absolute, and it is always a good idea to have
a system of checks against false positives, mainly on
your cleanset.

5 Conclusion

In this paper, we demonstrated the practical use case
of GenRex. With CAPEv2 behavioral reports as input,
we created a set of YARA rules and tested the correct-
ness and precision of the rules.

Based on an archived high true positive rate of
92.34% and a low false positive rate of 0.01%, we

demonstrated that the tool could reliably describe the
nature of named objects for the given malware family.
We also provide access to the project and additional
resources for easier use.

References

[1] D. Regéciová and D. Kolář, “GenRex: Leveraging
Regular Expressions for Dynamic Malware Detec-
tion,” 2023 IEEE 22nd International Conference on
Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2023. DOI: 10.1109/Trust-
Com60117.2023.00123.

[2] B. Bosansky, D. Kouba, O. Manhal, T. Sick, V. Lisy,
J. Kroustek, and P. Somol, “Avast-CTU Public CAPE
Dataset,” 2022.

[3] “CAPEv2 dataset v2.” github.com/regeciovad/

avast-ctu-cape-dataset/tree/reports_min.

Author details

Dominika Regéciová

Gen Digital
Brno, Czech Republic
Dominika.Regeciova@gendigital.com
ORCID iD: 0000-0001-8729-6999

Dominika Regéciová received a bachelor’s degree in
information technology and a master’s degree in in-
formation technology security from Brno University
of Technology, Faculty of Information Technology, in
2016 and 2018. Since 2018, she has been a Ph.D. stu-
dent and a member of the Formal Model Research
Group at Brno University of Technology, Faculty of In-
formation Technology. Her research includes formal
models and compilers and their use in computer se-
curity. She currently works as a Senior Researcher at
Gen Digital.

Dominika Regéciová, GenRex Demonstration: Level Up Your Regex Game 19

github.com/regeciovad/avast-ctu-cape-dataset/tree/reports_min
github.com/regeciovad/avast-ctu-cape-dataset/tree/reports_min
mailto:Dominika.Regeciova@gendigital.com

	Introduction
	GenRex
	Demonstration
	YARA
	Extended Cuckoo Module
	Dataset
	YARA Rules Generation With GenRex
	Evaluation

	Additional Tips and Tricks
	Too Short Strings
	Why Notate Sources?
	Test Your Rules

	Conclusion

