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Abstract
The present paper analyzes the CMK Linux

Kernel Rootkit. It demonstrates that it is pos-
sible to unpack the rootkit using emulation to
avoid inserting the module in a real Linux dis-
tributionmatching specific Linux kernel require-
ments. CMK Rootkit implements "magic pack-
ets", this study also demonstrates that it is
possible to extract the requirements for the
"magic packets" based on assembly language
patterns. We provide the implementation for
both, the Linux kernel rootkit unpacker and a
Ghidra script for extracting the requirements of
the "magic packets".

Keywords: cmk rootkit, magic packets, botnet, net-
filter.

1 Introduction

Packed malware has the disadvantage of being not
stealthy, at least such code protection will raise sus-
picions.

It is quite common to see Linux-packed malware
samples in ring 3 but it is much less common to see
packers in ring 0 Linuxmalware. Of course, we can put
some examples of ring 0 malware using kernel space
packers, for instance, the Reptile Rootkit [1] uses a cus-
tom rol32 algorithm in kernel space for decrypting the
payload at the init_module function. Reptile calls its
packer Kmatryoshka and Parasite to the unpacked ker-
nel rootkit [2, 3] which is the Reptile Rootkit kernelmod-
ule.

Most of the antiviruses detect Reptile Rootkit pretty
well [4] because it is open source and the source code

repository dates from 4 years ago, but we discovered
a new rootkit in VirusTotal [5] (malware_tr_2022-06-
19.tar), that we called CMK Rootkit because of how it
reveals itself, which uses a kernel space packer [6] and
remained undetected for about three months in Virus-
Total [7].

Kernel space packers for Linux kernel modules can
be helpful for efficiently passing under the radar. Fortu-
nately, we are always looking for this kind of threat (i.e.,
Syslogk [8][9]) and, even if protected, we were able to
detect this new kernel rootkit and extract the require-
ments for the "magic packets".

The rest of the paper is structured as follows. Sec-
tion 2 describes the components of this new rootkit
whose features are presented in Section 3. In Sec-
tion 4, we explain some solutions to extract the "magic
packet" requirements, present an implementation in
Section 5, discuss next our results in 6 and some ex-
tensions are summarized in Section 7. Finally, Sec-
tion 8 collects our conclusions.

2 Overviewing CMK rootkit

A machine infected with CMK rootkit contains the fol-
lowing three artifacts (see Fig. 16):

(a) /usr/share/man/B18D/cmk/launch

(b) /usr/share/man/B18D/cmk/module

(c) /usr/bin/systemd-hwdbsa

The launch script and the packed CMK Linux kernel
rootkit (artifacts (a) and (b), respectively) are analyzed
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next. At the same time, (c) is the arbitrary malicious
application hidden by the rootkit.

2.1 Analyzing the launch script

The launch script (see Fig. 1) is written in bash pro-
gramming language [10] and it is responsible for in-
stalling the packed CMK Linux kernel rootkit and ex-
ecuting the malicious hidden application.

In an intrusion post-exploitation stage scenario, the
attacker copies the three components of the rootkit
(the launch script, the packedCMKLinux kernel rootkit,
and the arbitrary malicious application) to the com-
promised machine. After that, the threat actor exe-
cutes the launch script (with arguments) for silently
installing the packed CMK Linux kernel rootkit and, fi-
nally, the CMKLinux kernel rootkit calls the same script
(without arguments) for executing the malicious hid-
den application: /usr/bin/systemd-hwdbsa.

If the script is executed without arguments, it
will execute the arbitrary malicious hidden applica-
tion whose name can be confused with the legit-
imate systemd-hwdb (hardware database manage-
ment tool [11]) and whose name appears also in the
hardcoded list of hidden files of the CMK rootkit.

In case the launch script is executed with argu-
ments, the pkill [12] Linux command with the flag -
STOP will send a signal to Linux Journal [13] for stop-
ping it and preventing the system from logging the
subsequent malicious actions. Notice that all the
commands are executed by redirecting the output to
/dev/null such that the command output is hidden
(lines 3-5). After stopping the logging system, the
launch script inserts the packed CMK Linux kernel
rootkit into the kernel via insmod [14] Linux command
(line 4). Finally, the launch script lets the Linux Journal
continue its execution by sending a signal using pkill
with the flag -CONT (line 5) such that the service will
continue logging system events.

2.2 Analyzing the CMK kernel space
packer

The /usr/share/man/B18D/cmk/module component is
a packed protected version of CMK Linux kernel
rootkit. Its code consists of two parts: an encrypted
version of CMK Linux kernel rootkit, and a routine or
stub responsible for decrypting, loading, and execut-
ing it (see Fig. 16).

The packed CMK Linux kernel rootkit is an ELF64
x86-64 (Relocatable) file, compatible with the fol-
lowing kernel version [15] according to the .mod-
info [16] section of the file: vermagic=3.16.06amd64
SMP mod_unload modversions. It can be loaded,
for instance, in a Debian 8.11 Jessie [17] 64-bit VM
disk image which exactly matches the kernel version.
The file does not have too much code but a lot of
data, it has only a few symbols (init_module and kall-
syms_on_each_symbol) apart from each other intro-
duced by the compiler. Those are indicators of packed

files [18].
By analyzing the init_module function, we found

a basic block in a loop containing instructions typi-
cally used for decryption (arithmetical, logical, and bit-
shifting operations). So, taking a look at the data used
in the loop, it is easy to identify (see Fig. 2) the begin-
ning of the encrypted kernel rootkit, at the offset 0x300
(0x340 offset on disk), that is stored in the RDI register
of the processor. Notice that the end of the encrypted
code is at the address 0x1FD78 (0x1FDB8 offset on
disk) stored in esi. The .text section has a 0x40 bytes
displacement on disk, so it needs to be kept in mind
when calculating the offsets. Finally, the key of the de-
cryption algorithm is 0x24924925 which is stored at
the r9 register of the processor.

The decryption routine is located just after such ini-
tialization of the registers. It applies a custom algo-
rithm that does not use syscalls or any other external
code so this routine is very easy to emulate. We im-
plemented an unpacker that relies on Miasm frame-
work [19, 20] to emulate the decryption routine and
dump the CMK Linux kernel rootkit to disk. Miasm is
a free and open-source (GPLv2) reverse engineering
framework aiming to analyze/modify/generate binary
programs. It also includes an x86-64 emulator that we
use in our dumper tool.

2.3 Dumping the CMK Linux kernel rootkit
with Miasm

It is possible to dump the CMK Linux kernel rootkit
from memory after the decryption algorithm gets ex-
ecuted but it requires setting up the environment for
loading the packed CMK Linux kernel rootkit which can
be a time-consuming task. So we developed an un-
packer tool that statically dumps the CMK Linux kernel
rootkit via emulation. It works as follows.

Based on the disassembly, we added some infor-
mation to our unpacker. For instance: the entry point
of the decryption routine, the offset to the encrypted
bytes, its length, and so on. Notice that all of these
values were taken from the in-memory representation,
the values are displaced 0x40 bytes on disk, as already
mentioned in the previous section, so we added such
displacement to our unpacker tool as Imagebase.

After reading the bytes of the packer, our unpacker
sets up an x86-64 emulator [20][21] and loads those
bytes at address 0x0. To avoid some errors that hap-
pened during the emulation, we manually set the rdi
and esi registers and prepare the execution for start-
ing at the next instruction (address 0x5C in memory).

We also developed a function for dumping the de-
crypted bytes to disk that is executed when hitting a
breakpoint at the end of the decryption routine (ad-
dress 0xA1 inmemory). Then our unpacking script lets
the emulator run (optionally observing the decryption
trace) which ends up dropping the CMK Kernel Rootkit
to disk.
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2.4 Understanding how the packer inserts
the decrypted rootkit

For dynamically loading the CMK Linux kernel
rootkit, after unpacking, the stub of the packer calls
sys_init_module [22] which is a Linux kernel API
function for loading kernel modules. In case the
sys_init_module symbol can’t be resolved via kall-
syms_on_each_symbol [23], it tries to load it via
__do_sys_init_module.

3 CMK Linux kernel rootkit features

As expected, CMK Linux kernel rootkit is distributed as
an x86-64 kernel module compiled for the same kernel
version as the packer. It was designed to start a hid-
den application and to bypass the local firewall when
providing a stealth reverse shell to the attacker, on-
demand via magic packets.

CMK Linux kernel rootkit installs two Netfilter
hooks [24, 25] for implementing "magic packets" (see
Fig. 12) that execute the user-mode commands via
Linux Kernel Work Queues [26]. It also hijacks some
kernel functions, hides itself, hides malicious pro-
cesses, and so on.

This malware is probably also based in OSOM (Out
of Sight Out of Mind kernel rootkit) [27], a Linux ker-
nel rootkit developed for academic purposes (OSOM
bachelor project, Department of Computer Science,
University of Copenhagen). We found great similari-
ties between OSOM and CMK in the function hijacking
technique implementation, the Netfilter hooks imple-
mentation, the use of Linux work queues [26], and the
code structure (i.e., the init function of the module).

Briefly stated, OSOMconsists of an osom_init func-
tion where the malicious functions for hijacking APIs,
intercepting network traffic via Netfilter hooks (first
hook, last hook), and hiding the module are called.
It uses two Netfilter hooks for implementing "magic
packets". The first hook parses the incoming DNS traf-
fic [28] and, in case it fits some requirements, the mali-
cious bash command to execute is extracted from the
packet for being executed as a Linux work [26]. The
other hook rewrites incoming DNS packets from the
C&C server such that the communication is transpar-
ent to the host.

3.1 The rootkit hides itself from the list of
modules of the system

As the majority of the rootkits does [29], CMK Rootkit
removes itself from the list of the inserted Linux mod-
ules making it invisible to the lsmod Linux command
(see Fig. 3). The function implementing it checks, by
using the repe cmpsb assembly instruction, if the value
of the parameter passed to it is: hide or show. Allowing
both, adding or removing the module from the list.

This hiding feature is very similar to the one im-
plemented by a didactic rootkit by Nick Newson [30],

which uses the sysfs_unlink_sibling [31] Linux ker-
nel API for hiding the rootkit (removing it from the
list) after checking if it is already hidden and also
uses sysfs_link_sibling[32] for adding it to the list.
The main difference is that the CMK rootkit tries to
use kernfs_unlink_sibling in case sysfs_unlink_sibling
is not found and also tries kernfs_link_sibling [33] when
sysfs_link_sibling is not found.

3.2 Persistence and execution of CMK

During the execution of the init_module function, the
CMK rootkit declares a Linux delayed work [26] to be
executed after 2 seconds. The delayed work structure
pointer cmk_launch_delayed_work_structure is passed
as an argument to the queue_delayed_work_on API
call.

As shown in Fig. 4, it executes the file
/usr/share/man/B18D/cmk/launch without argu-
ments. This means that it will run the malware
/usr/bin/systemd-hwdbsa as already discussed in the
section Analyzing the launch script.

The call to the snprintf[34] function is important
and deserves more explanation. It concatenates the
substring CMKCBAA6780FD86= and a key allowing it
to hide and protect user mode processes. It is ex-
plained next.

3.3 CMK can distinguish if the process was
created by the rootkit

CMK rootkit relies on the kernel API call_usermodehelper
for executing user mode applications. Such a
call receives a string that starts with the substring
CMKCBAA6780FD86= followed by a key (see Fig. 5).
The key varies depending on the call and can be
both, supplied by the attacker via "magic packets"
(must match the value: 0x8A9C491F) or hardcoded
in the rootkit (value 00000001). The resulting string is
passed to call_usermodehelper [35] as an environment
variable local to the process.

The rootkit hooks [36] the Linux kernel API
load_elf_binary which is responsible for preparing the
ELF files execution; such hook checks the existence of
the CMKCBAA6780FD86 environment variable.

If the variable contains any of the two mentioned
values, the rootkit will hide and protect the user mode
process using the mechanisms explained in the next
sections.

3.4 CMK rootkit hijacks OS functions

After starting to take a look at the obfuscated func-
tions, we noticed that some of them consisted of 0x20
NOP instructions (opcode 0x90) followed by a RET in-
struction (opcode 0xC3) [37].

This kind of trampoline function is also imple-
mented by OSOM Rootkit for hijacking a set of ker-
nel APIs. The main difference between both rootk-
its is that while the kernel addresses are hardcoded
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and NULL data (0x00 opcodes) is used in OSOM, the
CMK rootkit improves it (see Fig. 9) by resolving the ad-
dresses via kallsyms_on_each_symbol and uses NOP
instructions which are less prone to produce system
crashes. You can find a table enumerating the func-
tions that are hijacked by the CMK rootkit (the original
kernel API, the trampoline, and the hijack function) in
Table 3 of the paper.

3.5 The rootkit hides files and folders from
disk

CMK Rootkit uses an internal structure to store the
names of the files and folders that will be hidden. Such
a structure is composed of pairs of quad-words con-
taining both, the length and the file/directory name to
hide.

Based on this structure, the rootkit hooks [36]
the following Linux Kernel APIs for hiding files
and folders containing the strings in the list (see
Fig. 6): user_path_at_empty, compat_fillonedir, com-
pat_filldir64, compat_filldir, fillonedir, filldir64, filldir,
do_sys_open [38, 39]. For more information on the
hooked functions, please refer to Table 3. All of those
hooks on file and folder-related APIs, make a call to a
function that iterates on the hidden_files structure and
compares it with the original data for determining if it
should hide it or not.

3.6 CMK hides userland processes

It implements the same technique as Reptile rootkit [1]
for hiding processes. It hooks the function next_tgid
which is responsible for the /proc/PID entries (allow-
ing it to make the process invisible) but, it additionally
hooks copy_creds and exit_creds to add or remove the
flag 0x0BABA00 (see Fig. 7), on the task_struct, for a
process being visible or invisible, respectively.

It also hooks find_task_by_vpid which allows to re-
trieve the task_struct for a given PID. CMK Rootkit
performs checks if the task_struct contains the flag
0x0BABA00 established by copy_creds which indi-
cates that the task is hidden (this technique is also im-
plemented by Reptile rootkit).

3.7 The rootkit hides its CPU usage

To efficiently make the process invisible, the CMK
rootkit also hides its CPU usage by hooking the kernel
function account_process_tick. By doing so, it skips
the ticks for the hidden process (it checks if the flag
0x0BABA00 is present in the task_struct). Probably a
great example of kernel rootkits using this technique
is those hiding cryptominers.

At Fig. 8, you can see the hook entry for ac-
count_process_tick, where f91 is the trampoline and
sub_4960 is the function that implements the hook.
Even if implementing the hiding mechanism is not
complex, it requires a good understanding of Linux in-
ternals for processes. There are not too many Linux

kernel rootkits thoroughly implementing it (i.e., only 4
unique Rookits on Github use this technique [40]) so
this is a strength of CMK rootkit.

3.8 CMK protects the userland process
from kill

CMK rootkit hooks also kill_pid_info (see Fig. 13),
which is part of the internal flowwhen sys_kill is called
(see Fig. 10). Hidden processes, namely, processes
with the flag 0x0BABA00 on the taks_struct, cannot be
killed. An implementation of this technique is publicly
available in the Kunkillable [41] repository, which also
implements this technique.

3.9 The rootkit hides the malicious TCP
and UDP network traffic from the host

For hiding the network traffic, CMK Rootkit hooks
the following Linux kernel APIs: inet_stream_connect,
inet_release, inet_bind, inet_diag_bc_sk, udp6_seq_show,
tcp6_seq_show, raw6_seq_show, udp4_seq_show,
tcp4_seq_show, raw_seq_show, tcp_time_wait,
sockfd_lookup_light. It allows CMK to remove the
traffic related to invisible processes having the flag
0x0BABA00 in the task_struct.

3.10 CMK prevents the system from log-
ging the malicious activity

As shown in Table 2, CMK Rootkit hooks do_syslog,
devkmsg_read and comm_write for filteringout mes-
sages from the kernel’s log.

3.11 The rootkit prevents the system from
auditing the malicious processes

CMK rootkit also hooks the audit_alloc function in the
kernel and clears the TIF_SYSCALL_AUDIT flag which
defines whether the process is audited [42]. A similar
code snippet is available in the Reptile rootkit imple-
mentation 13 [43].

3.12 CMK rootkit implements "magic pack-
ets"

CMKRootkit sets twoNetfilter hooks by calling the ker-
nel API nf_register_hooks [44] (see Fig. 11). It allows
the rootkit to inspect the traffic. nf_register_hooks re-
ceives two parameters: the array of hooks and its num-
ber of entries. Each hook entry in the array consists
of a nf_hook_ops structure (see Table 12). The API
nf_register_hooks will call to nf_register_hook for each
hook entry, this second function is responsible for set-
ting the hook.

In the next subsections, we discuss the functions
hook_1 and hook_2 which allow spawning of a reverse
shell [45] and bypass the firewall, respectively.
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3.13 Analyzing the "magic packets" allow-
ing to remotely spawn a reverse shell

When inspecting the traffic, this Netfilter hook checks
that the protocol is IPv4, and the length of the header
is between 0 and 9 DWORDs in size. After that, it
checks whether the packet’s length is 5 or 6 DWORDs.
Based on these comparisons and also other subse-
quent checks on the fields of the packet, the instruc-
tion pointer will be able or not to reach a basic block
that contains the call to the spawn_reverse_shell func-
tion. It is possible to reach the spawn_reverse_shell
(see Fig. 14) function with IPv4 packets but different
header lengths (5 or 6 DWORDS). In our experiments,
we used a 6 DWORDs IPv4 header length for targeting
one of the two basic blocks that allow spawning of the
reverse shell.

The reverse shell is not executed directly, as other
Linux Kernel rootkits do (i.e., OSOM Rootkit, Reptile
Rootkit, etc.), it prepares a work_struct [26] structure
containing the parameters and the reverse shell func-
tionwhichwill be finally executed by a dedicated kernel
thread.

The reverse shell function is straightforward. It cre-
ates the string CMKCBAA6780FD80= plus the key as
explained in Section 3.3. After that, it executes the re-
verse shell command in user space.

/bin/bash i >& /dev/tcp/IP_ADDRESS/PORT 0>&1
This one-line bash TCP reverse shell is not new at

all, you can find it in many places [46].
As we already mentioned, there is more than one

path for reaching the reverse shell function of the
rootkit. Even if this is not the only possible solution,
we suggest the following "magic packet" structure:

• IP protocol version: 0x4

• Length of the IP header (specified in DWORDS):
0x6

• Identification: 0x9C8A

• Protocol: 0x6 (TCP Protocol)

• Options: 0xF7A9

• Source Port: 0x1F49

• Destination Port: 0x0080

• Sequence number: Use it for passing the "magic
packet" data.

• Flags: 0x2

Using the previous packet structure as a template,
triggering the reverse shell requires the following se-
quence of packets to be sent:

1. A packet containing the value 0x1A499C8A in the
Sequence number field such that the rootkit gets
prepared for reading the IP and PORT next, at the
offset 0x1A (the Sequence number field).

2. A packet with the IP address where the reverse
shell will try to connect in the Sequence number
field of it.

3. A packet with the PORT where the reverse shell
will try to connect in the Sequence number field
followed by the value 0x9C8A.

4. A packet containing the value 0x1F499C8A in the
Sequence number that will reach the basic block
executing the reverse shell. Without the previous
packets, the variables IP and PORT are not initial-
ized such that the reverse shell will try to connect
to an invalid socket: IP address 0.0.0.0 at port 0.

Our implementation of this sequence of "magic pack-
ets" is publicly available [47] under the file name:
cmk_rootkit_magic_packet_reverse_shell.py

3.14 Analyzing the "magic packet" for by-
passing the firewall

The reverse shell can bypass the local firewall (i.e.,
Iptables). A Netfilter hook registered by the rootkit
returns NF_STOLEN, meaning that the reverse shell
packet will be handled by the rootkit [48], preventing
this way from being rejected by the local firewall. In
case the packet does not need to be handled by the
rootkit, it returns NF_ACCEPT (See Fig. 15).

An example of Iptables rule [49] that can be by-
passed by the rootkit, assuming the port 1337 for the
reverse shell, is the following:
iptables -A OUTPUT -p tcp –dport 1337 -j REJECT –
reject-with tcp-reset

For reference, this technique is also implemented
by the KoviD rootkit [50].

4 Possible solutions when extract-
ing the "magic packet" require-
ments

Extracting the "magic packet" requirements consists
of, given the graph representation of a program, ex-
tracting the requirements of the input for reaching a
node or branch where the payload to trigger is present.

This is a well researched topic [51, 52, 53] but, for
the specific case of the "magic packets", specific so-
lutions can be more efficient due to the following rea-
sons:

• Gaining internal information of the hooks in-
stalled in the system (i.e., nf_hook_ops[54] struc-
ture) aids in substantially reducing the input
space.

• Luckily, the parser of the "magic packet" trigger-
ing the code is not obfuscated so, the checks on
specific fields of the packet (i.ex. the IP protocol
in case of IP packets) can be easily identified be-
cause those produce known assembly patterns
that appear across different malware samples.
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Next, let us discuss the specific problem of extracting
the requirements of the "magic packets".

4.1 A pattern matching approach for ex-
tracting the "magic packet" require-
ments

Linux allows intercepting network packets in Kernel
Mode via Netfilter hooks in a standard way. The hooks
receive a skbuff [55] parameter, the main Linux net-
working structure representing a packet.

So, the requirements for the "magic packets" can
be obtained from the following sources of information:

1. The nf_hook_ops[54] structure is passed to the
appropriate kernel function for registering the

Netfilter hooks. It contains relevant information,
such as the hooked networking protocol. The
"magic packet" networking protocol can be di-
rectly extracted from this structure.

2. The hook function. It receives the skbuff struc-
ture and performs the checks on the packet. The
field’s values on the "magic packets" can be ex-
tracted from those checks.

Notice that the function implementing the Netfilter
hook can call other functions to perform the checks,
so those must also be included in the analysis.

4.2 Figures and tables

Figure 1: CMK Rootkit launch script

Figure 2: CMK rootkit decryption routine parameters
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Figure 3: CMK rootkit hides itself from lsmod

Figure 4: CMK Rootkit. Persistence and execution.
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Figure 5: CMK rootkit identify the processes that it creates

Figure 6: CMK rootkit hide files and folders

Figure 7: CMK rootkit set unset invisible process
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Figure 8: CMK rootkit hiding CPU usage

Figure 9: CMK Rootkit vs OSOM Rootkit. Trampolines.

Figure 10: Unkillable process technique. Source: https://github.com/spiderpig1297/kunkillable

Figure 11: CMK rootkit "magic packets" hooks
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Figure 12: CMK rootkit vs OSOM rootkit. Netfilter hooks.

Figure 13: Reptile rootkit vs CMK rootkit. Hook on audit_alloc function.

Figure 14: CMK rootkit spawn reverse shell work queue
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Figure 15: CMK rootkit bypass the firewall

Figure 16: CMK rootkit. Sequence diagram
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5 Implementation and evaluation

Our analysis for extracting the requirements of the
"magic packets" is assisted by the following three tools
are publicly available on Github [47]:

• The magic_packets_analyzer.py tool consist of
a Ghidra script [56, 57, 58] that statically ana-
lyzes the target rootkit’s Netfilter hooks (and the
functions implementing those). Ghidra is a Soft-
ware Reverse Engineering Framework created
and maintained by the National Security Agency
that includes disassembly, assembly, decompi-
lation, graphing, and scripting, along with hun-
dreds of other features.

It searches for calls to the nf_register_hook and
nf_register_hooks Linux kernel APIs in the tar-
get. If found, it analyzes its parameters (the Net-
filter hook function, the network protocol being
hooked, and so on). It extracts the potential val-
ues required for the magic packets (the Proto-
col Family, the constant values used in the hook
function, and so on). The script prints all the
relevant information extracted from the target
during the static analysis (see Table 1). Finally,
it automatically generates brute-forcing Python
scripts and Linux kernel tracermodules based on
KProbes, preparedwith tracepoints at each basic
block of the Netfilter hook functions (and other
functions called from it).

• A set of brute-forcing Python scripts that aims
to generate valid "magic packets". Those scripts
are produced by the magic_packets_analyzer.py
tool explained before. The brute force attempts
are based on values extracted from static infor-
mation of the target Linux kernel rootkit.

• A set of KProbes Linux Kernel modules prepared
for tracing the "magic packet" brute-forcing pro-
cess. These kernel modules are produced
by the magic_packets_analyzer.py tool and use
KProbes for tracing.

Our methodology is as follows. We automatically ex-
tract relevant information from the target (see Table 1)
by using the magic_packets_analyzer.py tool (i.ex. in-
formation of the hooks that are relevant to the "magic
packets" and the constant values that participate, di-
rectly or indirectly, in the comparisons of the packets
fields).

We use brute-forcing Python scripts to try to reach
the basic blocks that execute the payload of the "magic
packets" while tracing the brute-forcing attempts with
the KProbes Linux kernel modules (see Table 2).

After that, only a partial analysis of the target Linux
Kernel rootkit is needed to produce the "magic pack-
ets". In the case of CMK Linux Kernel rootkit, we devel-
oped a Python script, publicly available on Github [47],
that can spawn the reverse shell while bypassing the
firewall via "magic packets".

6 Discussion

We fully analyzed CMK rootkit. A new Linux kernel
rootkit that implements "magic packets" for configur-
ing and then spawning a reverse shell bypassing the
rules of the local firewall. We used structure pars-
ing and pattern-matching [59] techniques for extract-
ing the requirements of the "magic packets" in a semi-
automatic way.

Even if it is still hard to reach the basic blocks that
trigger the commands in user-mode space by simply
running the scripts as is (see Table 2), those scripts
covered all the Netfilter hooks present in the malware
samples that were evaluated and chose the appropri-
ate networking protocols when generating the tem-
plate for the "magic packets".

7 Future work

Our pattern-matching approach substantially reduces
the time spent extracting the "magic packets" require-
ments and writing the PoC (Proof of Concept) code.

• The current implementation of our tool success-
fully identifies the functions that handle the Net-
filter hooks but it still fails to accurately deter-
mine the code responsible for the "magic pack-
ets" parsing. Our current implementation fol-
lows code called from the Netfilter hook function
which is mostly prone to overestimation errors.

• We added support for a few x86 and x86-64 as-
sembly language code patterns and supported
only the most frequent networking protocols
used for implementing the "magic packets": IP
and TCP. Our implementation can be extended
to cover more assembly language patterns and
more networking protocols supported by Netfil-
ter hooks.

• Kprobes [60, 61, 62] is a standard Linux Kernel
tracer that can trace most of the kernel except it-
self. Unfortunately, we found that some dynamic
calls introduced by the compiler appeared in the
standard Kprobes blacklist [63] being unable to
trace those.
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8 Conclusion

We recently discovered the Syslogk Linux kernel
rootkit, and now the CMK rootkit which also uses
"magic packets" for executing the payload and went
unnoticed for months in VirusTotal. Even if Linux ker-
nel modules are harder to write than user-mode appli-
cations, threat actors can find a lot of code snippets
of Linux kernel rootkits on the Internet which can be
easily modified to speed up the malware development
process and evade the detection.

This malware probably evaded the current detec-
tion mainly due to the packer layer. It is important to
make an effort to efficiently detect all the techniques
implemented by open-source kernel rootkits (i.e., Rep-
tile Matroska), hunting new rootkit malware samples,
etc. because it is expected to see, for instance, more
packed Linux kernel rootkits in the future as code snip-
pets are available on the internet.

Appendices

Appendix 1

CMK Rootkit. Script output.

magic_packets_analyzer.py> Running...

[*] Hook: DAT_00116440
[-] Function: 0x104700
[-] PF Number: 0x2
[-] Hook Number: 0x0
[-] Priority: -0x80000000

[-] IP header pointed by: RSI
[-] Protocols: set([6, 17])

[-] TCP header pointed by : EDX
[!] Bruteforce the IP header with the following values:

set([’0x114840L’, ’0x18L’, ’0xc2L’, ’0x8L’, ’0x4L’, ’0x58L’,
’0xe28L’, ’0x30L’, ’-0x20L’, ’0x10L’])

[!] Bruteforce the TCP header with the following values: set([’0x229L’, ’0xaL’, ’0x38L’,
’0x18L’, ’0x239L’, ’0x228L’, ’0x23bL’, ’0x22aL’, ’0x6L’, ’0x22cL’, ’0x8L’, ’0x23aL’,
’0x10a480L’, ’0x150L’, ’0x22fL’, ’0x2L’, ’0x4L’, ’0xeL’, ’0x168L’])

Generated:
C:\magic_packets\packet_9a1d46ef10e56195affd360c408e56e7.py
Generated:
C:\magic_packets\packet_480699c1caa3c49333829a51d3ee9e00.py

[*] Hook: None
[-] Function: 0x104540
[-] PF Number: 0x2
[-] Hook Number: 0x3
[-] Priority: -0x1

[-] TCP header pointed by : EDX
[!] Bruteforce the IP header with the following values: set([’0x248L’, ’0x228L’, ’0x22aL’,

’0x8L’, ’0x23aL’, ’0x170L’, ’0x150L’, ’-0x18L’, ’0x80L’, ’0x24L’, ’0x158L’, ’0x168L’,
’-0x20L’, ’0x20L’, ’0x162L’, ’0x10L’, ’0x198L’, ’0x38L’, ’0x28L’, ’0x18L’, ’0x239L’,
’0x23bL’, ’0x3f0L’, ’0x9L’, ’0x1c8L’, ’0x4L’, ’0x250L’])

[!] Bruteforce the TCP header with the following values: set([’0x229L’, ’0xaL’, ’0x38L’,
’0x18L’, ’0x239L’, ’0x228L’, ’0x23bL’, ’0x22aL’, ’0x6L’, ’0x22cL’, ’0x8L’, ’0x23aL’,
’0x10a480L’, ’0x150L’, ’0x22fL’, ’0x2L’, ’0x4L’, ’0xeL’, ’0x168L’])

Generated:
C:\magic_packets\packet_78d9d5ba87dc6b9008eb0bfee4703bf5.py
Generated:
C:\magic_packets\packet_536e27cf7e99e992e59006c5ef7e7d46.py

magic_packets_analyzer.py> Finished!

Table 1: Ghidra script output. Static analysis on CMK
Rootkit.

Appendix 2

CMK Rootkit dynamic results.

Hook id Autogenerated Test script Tracepoint Tracepoints
Function identifier addresses Reached (id)
0x104700 a 9a1d46ef10e56195affd360c408e56e7 0x10471d a,b

b 480699c1caa3c49333829a51d3ee9e00 0x10471b a,b
0x104730 a,b

0x104540 a 78d9d5ba87dc6b9008eb0bfee4703bf5 0x10454f Not reached
b 536e27cf7e99e992e59006c5ef7e7d46 0x10454d Not reached

0x104549 Not reached
0x104547 b
0x10455b Not reached
0x1170b8 Not reached
0x1045b1 Not reached
0x117010 Not reached
0x104570 a,b

Table 2: Dynamic results. Experiment on CMK Rootkit

Original Kernel API Trampoline start-end offsets (Virtual Address) Hijack (Virtual Address) Purpose
exit_creds 0x0030 - 0x0050 0x01B0 Hide process
copy_creds 0x0000 - 0x0020 0x00A0 Hide process
user_path_at_empty 0x3260 - 0x3280 0x3560 Hide files/folders
compat_fillonedir 0x3230 - 0x3250 0x38C0 Hide files/folders
compat_filldir64 0x3200 - 0x3220 0x3A80 Hide files/folders
compat_filldir 0x31D0 - 0x31F0 0x3700 Hide files/folders
fillonedir 0x31A0 - 0x31C0 0x39A0 Hide files/folders
filldir64 0x3170 - 0x3190 0x37E0 Hide files/folders
filldir 0x3140 - 0x3160 0x3620 Hide files/folders
do_sys_open 0x3110 - 0x3130 0x34B0 Hide files/folders
inet_stream_connect 0x3D90 - 0x3DB0 0x4340 Hide network traffic
inet_release 0x3D60 - 0x3D80 0x4260 Hide network traffic
inet_bind 0x3D30 - 0x3D50 0x4140 Hide network traffic
inet_diag_bc_sk 0x3D00 - 0x3D20 0x4030 Hide network traffic
udp6_seq_show 0x3CD0 - 0x3CF0 0x3F10 Hide network traffic
tcp6_seq_show 0x3CA0 - 0x3CC0 0x4000 Hide network traffic
raw6_seq_show 0x3C70 - 0x3C90 0x3EE0 Hide network traffic
udp4_seq_show 0x3C40 - 0x3C60 0x3EB0 Hide network traffic
tcp4_seq_show 0x3C10 - 0x3C30 0x3FD0 Hide network traffic
raw_seq_show 0x3BE0 - 0x3C00 0x3E80 Hide network traffic
tcp_time_wait 0x3BB0 - 0x3BD0 0x3DC0 Hide network traffic
sockfd_lookup_light 0x3B80 - 0x3BA0 0x40B0 Hide network traffic
load_elf_binary 0x4420 - 0x4440 0x4450 Intercept ELF execution
account_process_tick 0x4930 - 0x4950 0x4960 Hide CPU usage
audit_alloc 0x4900 - 0x4920 0x49D0 Hide from kernel audit
kill_pid_info 0x48D0 - 0x48F0 0x4C70 Process kill
find_task_by_vpid 0x48A0 - 0x48C0 0x4BA0 Hide process
next_tgid 0x4870 - 0x4890 0x4A60 Hide process
do_syslog 0x4DD0 - 0x4DF0 0x4F80 Hide from kernel audit
devkmsg_read 0x4DA0 - 0x4DC0 0x4F10 Hide from kernel audit
comm_write 0x4FD0 - 0x4FF0 0x5200 Hide from kernel audit

Table 3: Linux OS functions hijacked by CMK Rootkit.

Appendix 3

Indicators of Compromise (IoC’s).

• CMK Rootkit launch script
- 3E75B22524C41083AEA9BD6CFCC222A1
71CD8A9817135940A1B49E2ACEE7E66D

• CMK Rootkit (packed form)
- 54D8B09FFC15C657ABF29A0C313B377D
F64988848F2C3814243B2478B4B881CC

• CMK Rootkit (unpacked by us)
- 83F32F8330026F7CD26E9CF516C2980C
1059262B1902D2809CDFFAF771BD2AFB

• TAR archive file containing both the launch script
and the CMK rootkit
- 830B41D30241453EAA1E22CE8E076E
C4A0BDA3D70AC86FC84FDF82BCF002ABBE
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