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Abstract

As the number of malware attacks continu-
ally rises, malware analysts are facing an ever-
increasing workload. The growing complexity
of malware families and the sheer volume of
new threats make it challenging for analysts to
keep up with their analysis tasks.

Code similarity analysis offers high potential
in this regard, helping analysts to orient them-
selves and to speed up analysis. While being a
very active research field with many recent pub-
lications, only few of these focus onmalware or
support immediate practical usage, as they are
rarely accompanied by public code releases.

In this paper, we present the MinHash-
based Code Relationship & Investigation Toolkit
(MCRIT).MCRIT is intended to serve as a frame-
work for code similarity analysis, mainly fo-
cusing on One-to-Many (1:N) comparisons and
with the ability to recognize and filter out library
code. WepublishMCRIT as open source, includ-
ing a dockerized setup for easy deployment.

Keywords: malware analysis, reverse engineering,
code similarity.

1 Introduction

As the information security is constantly evolving, mal-
ware analysts continue to face a constant influx of
samples from a wide array of malware families. Re-
cent phenomena such as the frequent rebranding ob-
servable for multiple ransomware strains or the occa-
sional retooling of APTs make it increasingly hard to
keep track.

Code similarity analysis is a means with high po-
tential in this regard to help analysts navigate the

space and accelerate their analysis. It has become a
popular research topic in recent years, easily explained
by its multi-dimensional use in security context, such
as vulnerability discovery andmalware analysis. Espe-
cially when diving deep into malware families, focus-
ing on their internal evolution and relationship among
each other, there is a crucial need to have this capabil-
ity available.

In 2019, Haq and Caballero [1] published a survey,
listing about 50 academic works on the topic that have
been proposed since 2010. Sadly, many of the pre-
sented approaches have not been evaluated on larger
malware data sets and few are focused on use cases
like malware clustering, lineage analysis, or library
recognition. They are also not tailored towards imme-
diate practical usage, as they are rarely accompanied
by public code releases. Other established tools like
BinDiff [2] and Diaphora [3] focus only on direct com-
parison of single files with each other.

With this paper, we present and publish MCRIT,
the MinHash-based Code Relationship & Investiga-
tion Toolkit. MCRIT is intended to serve as an open
source framework for code similarity analysis, mainly
focusing on One-to-Many (1:N) comparisons and with
the ability to recognize and filter out library code.
MCRIT was originally developed since 2018 as a pure
research-oriented evaluation framework [4] with sup-
port for quasi-identical and fuzzy codematching. Over
the last two years, it was extended towards becoming
applicable in practical malware research context, with
internal improvements to efficiency and also the ad-
dition of a user friendly web front-end and dockerized
deployment.

We envision four primary use cases for MCRIT.
First, the toolkit is intended to aid with malware fam-
ily and library code differentiation. Being able to dis-
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cern these characteristics can provide massive ben-
efits that accelerate triage and analysis, as analysts
can direct their focus on code relevant to their anal-
ysis goals. Second, MCRIT provides the capability to
isolate code only found in a given sample or family.
This allows deriving code artifacts that could be use-
ful for hunting of similar specimen but also for the gen-
eration of identification rules, similar to our previously
presented results on YARA Signator in 2019 [5]. Third,
MCRIT is intended to serve as a system for lead gener-
ation when aiming for the discovery of potentially un-
known links across samples and families. In this case,
MCRIT can filter and search formatches between pairs
or small sets of families that still exhibit a high match-
ing score, directing an analyst’s attention towards po-
tential connections in their code. Fourth, as MCRIT is
also able to store meta data for functions, it can be
used for the transfer of function labels. This is a fre-
quent operation when wanting to speed up analysis
by reusing existing analysis results, e.g. during the in-
vestigation of multiple samples of the same family or
when exchanging information in a team.

In summary, our primary contributions with this pa-
per are:

• We present MCRIT, a framework that enables
efficient One-to-Many code comparisons using
quasi-identical and fuzzy code matching.

• We discuss a series of case studies to underline
the benefits that such a system can bring to mal-
ware analysis.

• Weprovide an implementation ofMCRIT as open
source, including a dockerized setup for easy de-
ployment [6].

The remainder of this paper is structured as fol-
lows. We provide an overview of related work in Sec-
tion 2. The main content of the paper is divided in
two parts: Section 3 describes the matching method-
ology and framework design of MCRIT and Section 4
provides a series of case studies to illustrate the four
primary use cases we currently envision for MCRIT.
To conclude the paper, Section 5 discusses limitations
and futureworkwhile Section 6 summarizes the paper.

2 Related Work

As already outlined in the introduction, (binary) code
similarity analysis provides immense practical value to
various application contexts. As a consequence, re-
search on the topic has become highly popular in re-
cent years. Haq and Caballero [1] have provided a com-
prehensive survey on the topic that we recommend for
study.

According to their survey, the first two binary code
similarity approacheswere published in 1999. Baker et
al. [7] presented ExeDiff, an approach intended to cap-
ture secondary changes introduced by the compiler
during compilation of the same source code in order to
reduce patch size, and Wang et al. [8] published BMAT,
a tool to propagate profiling information between se-
quential releases of Windows DLLs.

In the following decade, among the seven papers
on the topic are the two seminal publications byDullien
and Rolles. Dullien introduced an approach that uses
structural properties of functions and the call graph for
matching of functions between programs [9] and they
both proposed using the Small Primes Product (SPP)
algorithm for deriving a representation of basic blocks
that is robust against instruction reordering [10]. Both
of these techniques are keymethodologies used in Zy-
namics’ BinDiff [2], which has been a de-facto standard
plugin for applied binary diffing using IDA Pro [11]. No-
tably related to the scope we cover with this paper, Xin
et al. [12] published their method SMIT, which was the
first known One-to-Many matching approach intended
to find similarmalware in a database, given a reference
sample.

In the period of 2010-2019, Haq and Caballero
counted 52 publications on code similarity, document-
ing its rise in popularity. Generally since this time,
the focus shifted primarily towards the search of bi-
nary code with the intent of (re-)discovering vulnerabil-
ities, potentially across CPU architectures. This was
accompanied with wide-spread adoption of machine
learning techniques. Related to this paper, Jin et al. [13]
were the first to apply MinHashing in order to enable
scalable code comparisons. Ding et al. [14] presented
Kam1n0, another approach using a Locality-Sensitive
Hashing (LSH) approach, which also enables match-
ing on basic block level.

In practical context, Zynamics apart from BinDiff
also published VxClass [15] and BinCrowd [16], sys-
tems based on the techniques from BinDiff to enable
One-to-Many approaches for code similarity. Kornau-
von Bock und Polach et al. [17] presented concepts for
large-scale code similarity analysis within Google. Ko-
ret published Diaphora, another plugin for IDA which
reimplements the techniques used in BinDiff in pure
Python but also provides a variety of additional meth-
ods and features to enable effective diffing [3].

3 MCRIT

In this section, we now provide an overview of
the MinHash-based Code Relationship & Investiga-
tion Toolkit (MCRIT). The code similarity analysis and
matching approach used in MCRIT was developed in
the context of the PhD thesis by Plohmann [4], which
includes a detailed discussion and evaluation of de-
sign choices, parameterizations, and matching algo-
rithm performance.

In the following, we therefore limit ourselves to a
shortened summary of the core algorithms and rather
provide a detailed description of the components that
have been developed to turn MCRIT into a usable
framework as well as the interfaces it provides for in-
teraction.

8 Daniel Plohmann, Manuel Blatt, Daniel Enders, MCRIT: The MinHash-based Code Relationship & Investigation Toolkit



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

3.1 Motivation

One of the central drivers motivating the creation of
MCRIT is our ongoing malware collection and preser-
vation project Malpedia [18]. While Malpedia has al-
ready become a widely used resource in the cyber
threat intelligence context, we always believed that es-
pecially the curation of the underlying data set of ac-
curately identified and unpacked reference malware
samples holds significant value that will be eventually
unleashed in the future. In that sense, a lot of the work
onMalpedia was and is forward-looking, believing that
the data set will unfold its full potential as novel anal-
ysis methods and tools become available that allow
benefiting from the effort spent in the past. We be-
lieve that examples for success of this philosophy are
e.g. our own research onWinAPI usage in malware us-
ing ApiScout [19] and automated generation of code-
based YARA signatures [5], but also studies like the
one by Oosthoek and Doerr [20] who used Malpedia to
map out prevalance of TTPs as captured in the MITRE
ATT&CK framework [21].

Revisiting the survey on binary code similarity by
Haq and Caballero, we noticed that apart from the
work by Alrabaee et al. on FOSSIL [22], there is an un-
derrepresentation of papers with studies using many
different malware families and/or how to use refer-
ence library code to ease malware analysis. Similarly,
we generally perceived that there is a lack in freely
available tooling, especially as open source to address
these aspects.

For this reason, we started our work on MCRIT, in-
tended to serve as an open source framework for code
similarity analysis, mainly focusing on One-to-Many
comparisons and with the ability to recognize and fil-
ter out library code. As requirements for MCRIT, we
defined that we wanted to have interpretable similarity
measures including a simple and efficient representa-
tion for indexed code aswell as scalability intomillions
of functions.

The core idea of MCRIT is to reuse known, proven
techniques for code similarity analysis and use it
to explore novel approaches for result interpreta-
tion, specificallywhen incorporating information about
match origin (e.g. from benign software/library) and
when aggregating matching results, being able to as-
sign frequency weights for popularity of code across
the whole database.

3.2 Code Similarity Analysis

MCRIT is built around two core matching techniques,
applied to code similarity analaysis: PicHash and Min-
Hash.

Position-Independent Code Hashing (short:
PicHash) has been proposed by Cohen and
Havrilla [23] and is a method that allows the projection
of units of disassembled code such as a function or a
basic block into a hash. Prior to hashing, the code is
transformed by replacing its concrete addressing with
wildcards, thus making the code position-independent

as suggested by the name. The techniquewas demon-
strated to be able to massively reduce redundancy of
functions in binary data sets, for example by a factor
of 40 on their test set of 4 million executables.

Since look-ups using this technique can be done as
exact hashmatches, it can be implemented in algorith-
mic complexityO(1) using a hash map orO(log n) us-
ing a B-tree database index, which makes it incredibly
fast even in large data sets. As the method is prone to
collisions in small functions, MCRIT uses PicHash to
capture functionswith ten ormore instructions, aswell
as basic blocks of size four instructions and larger.
The PicHashes used in MCRIT are the numerical rep-
resentation of the first 64 bits of the SHA256 hash cal-
culated over the wildcarded instruction bytes (cf. [4]).

MinHash on the other hand has its roots in text
document similarity analysis. Originally described by
Broder [24] as a fast approximation of Jaccard set
similarity, it has served as the foundation for the web
search engine AltaVista but also found application in
other contexts such as genome matching. Combining
MinHash with locality-sensitive hashing (LSH) meth-
ods has been documented to provide great scalabil-
ity and is able to provide efficient lookups for single
entities in O(log n) when accepting a certain degree
of error. This implies that full pair-wise comparisons
(i.e. on malware sample level) can be conducted in
O(n log n), opposite to O(n2) when building off a sys-
tem that only supports One-to-One instead of One-to-
Many queries. MinHash was first applied to code simi-
larity by Jin et al. [13] and found use in several follow-up
works.

The expected accuracy of using minhashing for
code similarity is directly tied to the features used for
the description of the code to be indexed. The overall
MinHash indexing procedure of MCRIT is summarized
in Fig. 1. MCRIT uses token-based and metrics-based
features to capture the characteristics of functions.

The token-based features abstract concrete in-
structions into their semantic operation (mnemonic)
and operand classes, which are then sorted to turn
them into permuted code n-grams. This methodology
has been successfully applied before by Karim [25] as
well as Walenstein et al. [26] who both used n-grams
and n-permutations (short: n-perms) as representa-
tion for code comparisons, while Adkins et al. [27] pre-
sented a similar concept for instruction abstraction.
Metrics-based features capture statistical properties
of the functions, a concept that equally has been pro-
posed before, e.g. by Eschweiler et al. [28], who used it
as input for kNN clustering of code in their system dis-
covRE. The data points used in MCRIT are the size of
their largest basic block, the number of calls, the count
and share of instructions belonging to the most com-
mon semantic instruction classes, as well as the stack
size. Note that the parameter selection has been op-
timized to work well within the same bitness but does
not work well when comparing 32 bit with 64 bit code.
The reason for this is that Malpedia consisted mainly
(90%+) of 32 bit samples when we started the evalu-
ation and wanted to optimize for that over generaliza-
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push  esi

mov   esi, 0x023C598C
push  esi

call  dword ptr [0x02391294]

push  0x14

pop   eax

push  dword ptr [0x023C5978]
mov   word ptr [0x023C5980], ax

mov   eax, dword ptr [esp+0x10]

mov   dword ptr [0x023C5988], eax
call  dword ptr [0x023B9085]

xor   eax, eax

cmp   dword ptr [esp+0x8], eax

jz    0x023B4830

push  dword ptr [esp+0x8]

push  eax
or    eax, 0xFFFFFFFF

call  0x023B92C5

push  esi

mov   dword ptr [0x023C5978], eax

call  dword ptr [0x0239129C]

pop   esi
ret   0x8

max_block_size

num_calls
num_ins_C

num_ins_S

num_ins_A_rel

num_ins_M_rel
stack_size

Example Function: Metrics-based Features

12  |  14  |  16

 3  |   4  |   6
 4  |   6  |   8

 6  |   8  |  10

 6  |   8  |  10

14  |  16  |  20
-1  |   0  |   1

LogBucket Triplets

Instruction 3-grams (first 5)

converted to escaped 3-perms:

Token-based Features:

push esi mov esi, 0x023C598C push esi

mov esi, 0x023C598C push esi call  dword ptr [0x02391294]

push esi call  dword ptr [0x02391294] push 0x14

call  dword ptr [0x02391294] push 0x14 pop eax

push 0x14 pop eax push  dword ptr [0x023C5978]

M REG, CONST S REG S REG

C PTR M REG, CONST S REG

C PTR S CONST S REG

C PTR S CONST S REG

S REGS CONST S PTR

h h h h h h h h h h h h h h h h

min

LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB

min min min min min min min min min min min min min min min

109 52 76 112 51 68 105 65 124 124 82 48 99 75 115 33

14

 4
 7

 9

 8

17
 0

ValueFeature

Figure 1: A complete example for calculation of an MCRIT MinHash signature, segmented into 12 token-based
and 4 metrics-based entries [4].

tion. As mentioned, the design and derivation of these
features are extensively explained and evaluated in [4],
alongside an optimization of the overall systemconfig-
uration and the meta parameters used in MCRIT. For
this paper, we omit the full details and refer to the the-
sis for all further information (cf. [4], p. 131f.).

Formatching, MinHash sequences as shown at the
bottom of Fig. 1 are directly compared with each other.
For this, the number of matching entries at same off-
sets (e.g. both MinHashes having a 109 in the first
position etc.) is counted and divided by the signature
length, resulting in a matching score between 0 and
1. The MinHash configuration used in MCRIT currently
uses a signature length of 64 bytes. To allow efficient
matching, candidates are identified using the so-called
banding technique [29] and processed in parallel.

As outcomeof this operation, allmatcheswith their
respective MinHash similarity score are calculated for
each input function, which can then be aggregated to
sample level. Note that for effective operation of the
MCRIT system, it allows and essentially requires to
store meta data indicating a malware family label as
well as a boolean flag if a sample or family is consid-
ered benign library code.

Now during result aggregation, MCRIT has the abil-
ity to incorporate knowledge about reference library
code and to perform occurrence frequency analysis
with respect to all other samples and families identi-
fied duringmatching, which can also additionally serve
as a generic heuristic for the detection of common
code, such as third party library code. In general, the
occurrence frequency analysis duringmatching allows
filtering and focusing on functions with a specific in-
terest and from multiple viewpoints, enabling what we
consider the primary use cases of the system.

3.3 Framework Overview

We now continue with a description of how the above
code similarity analysis methodology has been imple-
mented into a practically usable framework, as shown
in Fig. 2. Overall, Python has been used as the primary
programming language.

The previously described code similarity analysis
methodology is divided into two core components,
which share a common codebase [30]: MCRIT Server
and MCRIT Worker. The MCRIT Server provides an in-
terface to all functional aspects of the system, which
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Figure 2: Overview of the components of the MCRIT framework.

is exposed in the form of a REST API, implemented
using the Falcon framework [31]. Most API end-
points that just respond to simple information queries,
e.g. on families, samples, or functions are realized
synchronously, while tasks that are potentially tied
to longer run time, such as disassembly, indexing,
and similarity matching lead to the creation of jobs,
which are then stored in a queue and handled asyn-
chronously. This is the primary role of the MCRIT
Worker, which takes these jobs from the queue and
processes them. As disassembler, SMDA [32] is used,
which had been created to provide better code cover-
age and accuracy for the analysis of memory dumps,
which are a common representation of unpacked code
inMalpedia. Because of SMDA, the system is currently
limited to x86/x64 Intel code, but we expect expansion
to further architectures in the future, e.g. support of
.NET code has been tested internally already and is in
development. The matching of MinHashes is done us-
ing NumPy [33] and parallel processing to boost sys-
tem performance. It is possible to use multiple MCRIT
Workers in parallel as well, as their coordination is han-
dled implicitly through the queue.

To support larger-than-memory operations and
provide persistence, MCRIT relies on a database that
stores the once processed disassembly andmeta data
for all samples and the functions they contain. We
have chosen MongoDB, as SMDA’s output is already
in JSON and we saw additional synergies in data to
object mapping in other places of the system.

To increase usability of the system, we used
Flask [34] to create a browser front-end called MCRIT
Web [35]. MCRIT Web is implemented against the
REST API of MCRIT Server. Apart from visualization of
contents and matching results stored in the system, it
adds user management and access control.

All the previously mentioned components have
been containerized using Docker [36] in order to sim-
plify setup and deployment of the framework. Docker-
MCRIT [6] additionally adds NGINX [37] including de-
fault configurations to quickly enable the transfer of
large files and add TLS support.

While MCRIT Web is one primary way to interact
with the system, we anticipate that users may want
to integrate MCRIT into existing processing pipelines

or use the service on a machine-level. For this reason,
we have implemented an MCRIT Client, which allows
direct interaction with all endpoints of MCRIT Server’s
REST API directly using Python. In deployments where
MCRIT server is not directly exposed to the outside, an
API pass-through is possible for a subset of endpoints
via MCRIT Web. A console application using MCRIT
Client has been added to the package [30] as well.

As one example how MCRIT can be directly used
fromwithin analysis tools, we recently started develop-
ing an IDAPro plugin. The current state of the plugin al-
lows sending the disassembly from the IDA database
IDB) including all function labels to MCRIT, as well as
queryingMCRIT for similar functions and importing la-
bels tied to the matched functions.

We expect to further increase the usability of
MCRIT as we will continue development and hopefully
receive feedback from its future users.

4 Case Studies

To illustrate the capabilities of MCRIT in its current
state, we will now present a number of case studies,
covering different functional aspects of the system.
These case studies are structured along the primary
use cases we currently envision for MCRIT:

• Malware family identification and library code
differentiation to accelerate triage and analysis

• Isolation of unique family code to providemeans
for hunting towards their characteristics

• Lead generation for discovering potentially un-
known links between samples and families

• Label transfer between samples during in-depth
analyses of malware families.

For the following experiments and discussion, we
use an MCRIT database populated with the entire Mal-
pedia data set as of 2022-12-09 (commit: 4ea73337),
and a collection of reference code for theMicrosoft Vi-
sual C++ runtime (MSVCRT) for all versions between
6 and 2019 in multiple compilation settings [38]. In
total, this leads to a database of unpacked code for
about 6.200 malware samples, associated with 1.500
distinct malware families and totalling 7 million func-
tions.
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Figure 3: Best Family Match Result View; after submitting the win.remcos v3.8.0 test sample to the demo
MCRIT database.

Figure 4: MCRIT Match Diagram for the win.remcos v3.8.0 test sample. The upper row shows function occur-
rence frequency, the lower row recognized library functions. The section on the right side indicates that this
sample contains about 40% library functions, in this case from MSVCRT.

4.1 Malware Family Identification and Li-
brary Code Differentiation

As our first primary use case, MCRIT is intended to
aid withmalware family and library code identification.
Generally, being able to discern these characteristics
can provide massive benefits that accelerate triage
and analysis, as analysts can direct their focus on code
relevant to their analysis goals. On the one hand, func-
tions immediately recognized as library code can be
discarded from the scope of analysis and their usage
in the program’s context is often immediately under-
stood. On the other hand, it also allows to highlight and
weigh function matches pointing to code from known
malware families when trying to quickly understand
what changed in samples of new versions of a given
malware family.

We now investigate a sample1 of the RAT
win.remcos, which was submitted to Malware
Bazaar [39] on 2022-12-07 and assume we had not
been able to identify it by other means. It has an inter-

nal version v3.8.0, while the highest version known to
our database at this time is v3.4.0.

Upon submission to MCRIT, we are presented with
the result shown in Fig. 3. The table shows the best
matched sample per family, with the columns Direct
and Frequency showing thematching score in percent.
Here, the left number are scores without removing the
share of recognized library functions while the right
number is a matching score only calculated across
the remaining non-library functions. We notice multi-
ple things. First, as anticipated, with regard to Direct
scores, win.remcos is the best matched family, with
the closest sample matching 92%. We can also see
thatmultiple other familiesmatchwith up to 41%, when
not using library filtering or frequency-based weights.
However, looking at the last two columns under Fre-
quency, we see that we still have strong matches
against win.remcos, with 67% especially when filtering
out library functions while all others drop notably.

With regard to library recognition, we developed a
specific type of diagram for MCRIT that is able to visu-

1ae07807f71e0584e2651db6ac5ba04db40923066375ed1977ac9b5ac65f5af44
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Figure 5: Best Sample Match Result View, filtered to family win.remcos; after submitting the win.remcos v3.8.0
test sample to the demo MCRIT database.

Figure 6: Cross-Compare Result Matrix for family win.remcos, sorted by compilation timestamps. Two clusters
for major versions 2 and 3 are clearly recognizable.

alize the occurrence frequency of functions across all
families and which functions have been recognized as
library.

The diagram for our win.remcos sample is shown
in Fig. 4. Generally, both rows divided by the black
bar in the middle provide the same view on the whole
executable but contain different information. From
left to right, all functions larger than ten instructions
sorted linearly by their virtual address are shownwithin
the small columns, being divided by the little black
squares. The size of the bars also indicates the func-
tion size.

The upper row shows the occurrence frequency per
function across all families in the data set. The color
scheme ranges from dark blue (1 family), to cyan (2-3),
over green (4-7), yellow (8-15), orange (16-31), and red
(32-63) to violet (64+). We can see a divide towards
the right side, as in the beginningmostly functionswith
low occurrence in few families are found (blue), while
in the “back” most matches are found in 64 and more

families (violet). The second row of the diagram (only
green is used for coloring) additionally indicateswhere
known library functions have been identified in the ex-
ecutable. In the MCRIT demo instance, we currently
only use MSVCRT as reference library code and it ap-
pears that about one third of the code contained in our
win.remcos sample is associated with the standard
runtime of Microsoft’s Visual C++ compiler.

We also confirmed this result with IDA Pro, as the
embedded FLIRT technique for library recognition pro-
duces very similar results. We expect that this in par-
ticular will become much more useful once an array
of additional popular libraries such as zlib or OpenSSL
have been added to anMCRIT database, asMCRIT can
also serve as a label provider for function names.

As a further experiment, let us filter down into
matches versus the target family win.remcos (Fig. 5).
Furthermore, we can now see that there was appar-
ently a significant development gap between the v2.x
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Figure 7: Excerpt of an automatically generated YARA rule, based on characteristic basic blocks for 19 samples
of family win.remcos.

and v3.x branches of win.remcos, as older samples al-
most appear unrelated.

To further understand the development of
win.remcos over time, we can use MCRITs so-called
Cross-Compare feature, in which all samples of a cho-
sen set are compared against each other, with the
result being rendered in a matching matrix. The result
is shown in Fig. 6. Here, the strength of matches is in-
dicated by color and decreases from blue (strongest)
over green, to yellow, orange and red, with black be-
ing no meaningful match. Please note that while the
Cross-Compare would automatically perform hierar-
chical clustering, we have re-arranged the order of
samples as shown in Fig. 6 chronologically by their
compilation timestamps.

In this matrix, we can see that indeed two bigger
clusterswith internal code relationship exist, one span-
ning versions prior to v3.x and the smaller one with
the v3.x samples. We are generally presented with
what appears a linear development history, meaning
that matching scores get lower as version numbers in-
crease. An interesting observation is that the two Free
and Light versions each include about 100 functions
(column FNs) less than their surrounding Pro coun-
terparts, accompanied by expectedly lower matching
scores. Our assumption in this regard is that some
functionality has been excluded in the compilation of
these versions.

Both the previously shown matching and Cross-
Compare can be used for queries of arbitrary families,
allowing the comparison of pairs or multiple samples
at once to gain an overview of potential relationships.

With respect to computational performance, the
processing time for disassembly of the 2.500 func-
tions in our win.remcos v.3.8.0 sample and their
matching against all of the 7 million functions of
the 6200 samples in the demo MCRIT database took
4:26min on a machine with 8 virtual cores and 32GB
RAM.

4.2 Isolation of Unique Malware Family
Code

As a second primary use case, MCRIT provides the ca-
pability to isolate codeonly found in a single given fam-
ily or a specific selection of samples. Similar to our
presentation of and the results achievable with YARA-

Signator in 2019 [5], MCRIT is able to filter down to
code found only in a single family, but this time we
are focusing on full basic blocks (which are already in-
dexed with PicHashes anyway) instead of instruction
n-grams.

Consequently, this provides us with a convenient
way to derive code-basedYARA rules. For this, we have
to solve the multi-set multi-cover problem, in which we
try to cover all samples of the family in question with
a chosen number of basic blocks occurring in them. A
minimal solution to this problem is algorithmically very
hard to achieve but greedy approximation algorithms
exist that make solutions feasible. The default set-
ting here is based on our findings with YARA-Signator,
where wewant every sample to be covered with 10 sig-
nature strings or more.

Returning to our win.remcos example, we can ask
MCRIT to differentiate the family against the remain-
der of the corpus and produce a result as shown
in Fig. 7 In the reference collection, MCRIT is able
find a total of 10,028 unique basic blocks across all
win.remcos samples that are not found in any sam-
ples of other families and it produced a selection of
blocks that covers all 19 input samples. We can see in
the comment, that a total of 20 basic blockswere suffi-
cient to cover all samples with at least 10 basic blocks
each, as many blocks like the one shown here as ex-
ample cover a multitude of samples at once (15/19).
This is also in line with our previous observation that
a major rewrite happened within win.remcos between
v2.x and v3.x and MCRIT identifies only one single ba-
sic block that is found in all 19 samples.

To validate the quality of the automatically gener-
ated YARA rule, we perform a retrohunt against Virus-
Total’s goodware corpus [40], which shows that the
generated rule has no false positives against that data
set.

4.3 Lead Generation for Investigations of
Code Relationships

As a third core feature, we believe that MCRIT is
well suited for providing leads that can be used to
find and investigate potential relationships between
malware families. As an example, we want to high-
light how MCRIT would have been able to aid in the
analysis of win.wannacry. At the time, Neel Mehta
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Figure 8: Control flow graph comparison feature of MCRIT Web. The functions shown are those from malware
families win.wannacry and win.contopee, mentioned in the tweet [41] hinting about win.wannacry attribution.

tweeted out [41] two MD5 hashes and pairs of virtual
addresses2 which were among the first public attri-
bution hints of this infamous ransomware worm to-
wards the direction of North Korean threat actor group
Lazarus.

We replicated the situation and show that MCRIT
is able to find this exact same pair of similar functions
between the respective samples of win.wannacry and
win.contopee, based on which the latter was previ-
ously attributed to Lazarus by Symantec [42]. The
functions in question are shown in Fig. 8, which also
serves as demonstration of the current state of the
built-in function control flowgraph comparison feature
of MCRIT Web. In this case, blue and green blocks
are byte-identical (PicHash) and semantically-escaped

matches (cf. Fig. 1), whereas the first basic block is not
matched as well as the others, due to several smaller
changes in its instructions and sequence. This func-
tionmatch in itself has an overall MinHash similarity of
67% but it stands out so well, as all of those matched
basic blocks are (with respect to our demo database)
indeed only found in those two families and almost un-
deniably the product of shared source code. Further
hints towards Lazarus identifiedwithMCRIT have been
discussed in Plohmann’s thesis (cf. [4] p. 162f.).

We believe that it should be possible to even iso-
late and rank such specific code similarity occurrences
based on characteristics like how large matched func-
tions are, how much code is identically reused and in
how many other malware families it is found. MCRIT

29c7c7149387a1c79679a87dd1ba755bc @ 0x402560, 0x40F598
ac21c8ad899727137c4b94458d7aa8d8 @ 0x10004ba0, 0x10012AA4

Daniel Plohmann, Manuel Blatt, Daniel Enders, MCRIT: The MinHash-based Code Relationship & Investigation Toolkit 15

https://malpedia.caad.fkie.fraunhofer.de/details/win.wannacryptor
https://malpedia.caad.fkie.fraunhofer.de/details/win.contopee
https://malpedia.caad.fkie.fraunhofer.de/details/win.wannacryptor
https://malpedia.caad.fkie.fraunhofer.de/details/win.wannacryptor
https://malpedia.caad.fkie.fraunhofer.de/details/win.contopee


THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

already supports aspects of this hunting approach by
allowing to filter the list of matched functions e.g. by
score and number of families.

4.4 Label Transfer

The fourth feature of MCRIT that we want to high-
light in this paper is the system’s ability to store labels
for functions, which opens possibilities for reusing
and transferring these labels between analysis tools
and projects. Label transfer, especially across analy-
sis projects in both static and dynamic analysis tools,
promises immense productivity gains, which partially
explains why there have been many ventures towards
providing solutions for this task [16, 43, 44, 45], out
of which many unfortunately have been discontinued.
The challenges for creating an effective solution in this
context have been explained to be enormous by their
respective authors, which is likely also influenced by
different usage aspects which create competing de-
mands. Particularly enabling real-time synchroniza-
tion of work states, keeping history and bridging devi-
ations in function definitions etc. appear to stand out
as difficult aspects.

MCRIT does not aspire to solve these tasks and in-
stead rather focuses on label collection and providing
label candidates through its matching capabilities. As
a proof of concept, we currently develop a plugin for
IDA Pro, which can already query for function matches
and push/pull function label information (cf. 3.3).

Generally, there exist multiple sources for such
function labels. For example, the disassembler used
in MCRIT, SMDA [32], is capable of extracting them
via meta data information from binaries where avail-
able (e.g. Delphi, Go, DWARF; PE exports). Interfac-
ing SMDA with another disassembler like IDA Pro (e.g.
exporting IDBs) additionally allows access to IDA’s
full capabilities, including labels from functions recog-
nized by IDA FLIRT [11] or user defined function labels.

As we see value in a collection of labels indepen-
dent from the technology intending to benefit from
them, we expect to allocate some time in the future
for the creation of reference data for popular libraries
that will allow the derivation of label collections also
usable in MCRIT.

5 Limitations and Future Work

We will now briefly outline the limitations and what we
want to address in future work on MCRIT.

The state released along this paper is considered
as a first version. While it is fully functional as de-
scribed, there are different aspects which we will ad-
dress with usability improvements, especially once we
receive feedback.

As explained in Section 3.2, MCRIT is currently lim-
ited to x86/x64 Intel assembly. Furthermore, it has
not been optimized for cross-bitness matching, which

we consider an increasingly impactful limitation mov-
ing forward. However, as the matching engine of the
framework has been designed modularly, it allows for
trivial addition or modification of feature shinglers.
This will enable later extension to both support other
CPU architectures or bytecode like .NET, as well as fur-
ther optimization of overall matching performance.

Another limitation is that the framework in its cur-
rent state has only limited options for exchanging data
with other MCRIT instances and users. While basic
import and export of data is supported, we are look-
ing forward to improve these mechanisms to help re-
duce computational redundancy across deployments
and to make it easier to provide reference data, e.g. a
pre-processed version of Malpedia.

MCRIT currently only focuses on indexing of code
using PicHashes and MinHashes but while wokring
with it we noticed it might be of value to add capabili-
ties for more detailed search in code, e.g. by requiring
sets of specific WinAPIs used in a function, strings, or
PE/ELF meta data.

6 Conclusion

In this paper, we presentedMCRIT, theMinHash-based
Code Relationship & Investigation Toolkit.

We first motivated the creation of MCRIT with the
need for a freely available solution that enables effi-
cient One-to-Many code comparisons for malware in-
vestigations. We continued with a summary of the
two code similarity estimation methodologies used in
MCRIT, enabling quasi-identical and fuzzy matching:
PicHash andMinHash. This was followed by a charac-
terization of the framework and its components, which
is tied together with Docker for a painless setup.

The second part of the paper was dedicated to
case studies demonstrating the use of MCRIT along
the four primary use cases we envision for the project.
This included an explanation of how MCRIT can aid
in malware family and library code identification and
how MCRIT isolates basic blocks unique to selected
malware families to support YARA rule creation and
hunting. We furthermore revisited the attribution of the
win.wannacry case and showed MCRIT’s view on the
identified code relationship. Finally, we discussed the
value of function labels and how we envision MCRIT
aiding in transferring them between analysis projects.

We provide the code for all components of MCRIT
as open source via Github repositories [30, 35, 6]:

https://github.com/danielplohmann/docker-

mcrit.
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