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Abstract

Packer detection is an important topic be-
cause most malware is packed and this allows
it to avoid detection based on static analysis.
Identifying classes of packers is the key to ef-
fective detection because it makes it easier to
determine from a static analysis whether fur-
ther analysis is needed or whether a decision
is already possible. Thus in this work we pro-
pose new features to cluster packers from their
unpacking function. This method makes it pos-
sible to effectively cluster packers, and is able,
by clustering, to identify packer classes used by
malware. It is a step towards a larger data clus-
tering allowing to identify custom packers.

Keywords: botnet, packer, clustering.

1 Introduction

1.1 Context

Tools based on signature methods such as ClamAV[1]
for malware detection or DIE[2] for packer detection,
answer to part of this problem, by generally updat-
ing their database with manual intervention. This al-
lows malware analysts to identify the characteristic
features of the malicious file in order to make a suit-
able signature and provide some tagging data. But
thismanual interaction is responsible for delays in tak-
ing into account new threats and takes the risk of not
detecting an attack in time. Therefore, we place our-
selves in the case of automatic generation of signa-
ture databases and we must answer the problem of
identifying classes of packers for weakly labeled data.

To identify these classes of packers we can cluster our
data using clustering algorithms. Clustering is the pro-
cess of dividing data into subsets (clusters) accord-
ing to relevant criteria. The elements to be clustered
can be considered only once, at the initialisation step,
which is the standard procedure for most clustering
algorithm. In our case we have to consider our data
as a continuous flow in real time because of malware
packer evolution. Thus, we have to apply incremental
clusteringmethods. In this paperwe use the incremen-
tal DBScan clustering algorithm that we detail in Sec-
tion 2.2. To distinguish these classes of packerswe fo-
cus on the static analysis of their unpacking function.
We apply transformations on this unpacking code to
avoid changes in the code that would not be charac-
teristic. This step of extracting relevant data from our
samples is described in Section 2.1.

1.2 Ambition

This is a preliminary work that introduces a method
to distinguish classes of packers. By clustering large
amounts of data we can determine crucial information
about packer classes without labeling them precisely.
This way, we can interpret clustering results with the
aimof improving a detection engine. To do this, we can
take advantage of our trust in the sources from which
themalware and goodware are fetched. Indeed, a clus-
tering on this scale makes it possible to distinguish
classes of packers which concern both goodware and
malware. The composition of these classes of pack-
ers is a good indicator to notice that they are common
packers, such as UPX[3] or MPRESS. On the contrary,
if these classes of packers are only composed of mal-
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ware then this gives a good indication that they are
characteristic of the malware world. For example it
can be packers purchasable on the darknet which can
be used by many different malwares. Also, consider-
ing the labeling of the malware community and in par-
ticular the most serious sources, we can consider our
classes of packers through the labeling of their pay-
loads. If in the composition of a class of packerswe al-
ways find the samepayload labeling, thenwemay have
to deal with a packer specific to a particular malware.
The reasoning is also true for groups of malware au-
thors. Figure 1 illustrates this general reasoning. This
characterization is the goal of our work and the case
studies of Section 3 goes in this direction.

Figure 1: Packer classes identification

1.3 Related work

There are works on the packer classification problem
in literature. Most studied techniques are based on
yara-like signatures [4], and DIE[2] (Detect It Easy) is
a classic tool using this method, also PEiD[5] is well
known but does not evolve anymore. These tools are
used in major malware detection platforms. Yara-like
signatures in these tools are generally manually wrote
which is not adapted to rapidly evolving malware. As
a result these needed manual intervention are respon-
sible for delaying detection of new packers. Machine
learning methods are also used for packer classifica-
tion, particularly supervised learningmethods as in [6].
These packer classifier models perform well for clas-
sifying packers belonging to classes that the model
trained from, but it is not adapted to evolving and
new packers that appear in the wild. The method de-
scribed in [7] is the closest to our work in terms of
transformations on the graph (Section 2.1), but they
do not validate their model experimentally. Moreover,
their way of considering the graph as a whole seems
less suitable to clustering approaches. The work of
Noureddine et al.[8] uses the same incremental clus-
tering method and performs very well on their custom
set of packers. It has demonstrated the relevance of

incremental clustering in the context of highly evolv-
ing packers. However, more tests on custom packers
used by malware are needed to have more confidence
in this model. Also, it might be necessary to weight the
different features by their relevance.

2 Methodology

2.1 Part of transformed CFG as features

We want to capture similarities between packed files.
Extracting features from our files that will match this
ambition is necessary and is the main difficulty. We
must choose features that correspond to relevant
characteristics for clustering our files. In related work
[8] features selection is focused onmetadata and pon-
dered with the first few instructions extracted through
radare2 [9]. We decide to match packers through sim-
ilarities of their unpacking code. To extract charac-
teristics of this code, we disassemble statically this
unpacking procedure, building a Control Flow Graph
(CFG). We could compute a distance from this CFG
but it may pose a problem since it is not resistant
to few syntactic modifications of a program code or
modifications implied by new versions of code com-
pilers. To handle this problem, after static disassem-
bly of the program code we apply some transforma-
tions on the resulting Control Flow Graph (CFG). These
transformations are basedonpreviouswork on theGo-
rille tool[10]. They are made for catching similarities
between binaries and to be resistant to code modifi-
cation. Principle is to focus the analysis on the CFG
shape, in particular on conditional branching in the pro-
gram. From this transformed CFG graph we compute
several sub-graphs of 12 nodes, a sub-graph is com-
puted for each node of the graph and correspond to
a breadth-first exploration of the graph. A sample
can be represented as a set of sub-graphs, and each
sub-graph can be signed in a unique way. In our case
we chose to sign these sub-graph by computing amd5
hash. We can now compare this new form of samples
by comparing the number of common sub-graphs sig-
nature between two samples. It is the problem of com-
paring two sets, and one notion of distance that can
be used, and will be used in this paper is Jacquard dis-
tance which is a classic distance for set comparison.
Jaccard distance of two setsA andB, Jδ(A,B) can be
described as:

Jδ(A,B) = 1− |A ∩B|
|A ∪B|

This distance has the advantage of comparing the ra-
tio of common elements in two sets, it is a good choice
in our opinion when applied in our context since pack-
ers does not hide their extraction procedure among a
larger code. If we want to take this hypothesis into ac-
count, for more obfuscated packer extraction proce-
dure, the overlap distance[11] may be a better choice
and will be investigated in future works.
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2.2 Incremental DBScan

Since the files we need to cluster are constantly
fetched from multiple sources, static clustering meth-
ods would be a large waste of time and computing
resources since the entire clustering needs to be cal-
culated again each time new points are added to the
dataset. Another practical problem with static clus-
tering is that many methods rely on a pre-computed
distance matrix that would be of a prohibitive size
when working with large datasets. We picked a
DBScan[12] incremental clustering algorithm. DBScan
is a density-based clustering method that is widely
used. Density-based approaches usually consider el-
ements in sparse areas as noise, which correspond
to our context where we want to cluster files from the
wild. The percentage of these files that will be unique
and impossible to cluster should be important, hence
DBScanwill consider it as noise andwon’t be bothered.

Its pairwise comparison also match our features (de-
scribed in sub-section 2.1), because we do not have
any order notions on our data and only pairwise com-
parison has a meaning is this context. Also incremen-
tal DBScan has already been used with some success
in the work of Noureddine et al.[8] for metadata fea-
tures.

Incremental DBScan, when clustering a new sam-
ple, will first find the closest cluster to the incoming
data point, then check if the new point respect the den-
sity criterion to be integrated into the cluster (e.g. there
are enough cluster points close to it). If the incom-
ing point cannot be integrated into an existing cluster,
the algorithm will try to create a new cluster by find-
ing enough close neighbours in the data point currently
classified as noise. Finally, if no new cluster could be
created the incoming point is classified as noise and
the procedure repeats for the next data point. See Fig-
ure 2.

Figure 2: Incremental clustering process for packed files

3 Case studies

3.1 Manually packed samples

For initial testing and evaluation of the clustering
method, it is necessary to have a selection of samples
that are packedwith known packers and to know spec-
ifications that can act as a ground truth when judging
cluster coherence and quality. But a problem when
dealingwith packed files fromanoutside source is that
it can be very difficult to verify which packer was used

on the file, even when it is a given information, since
errors in packer identification are common and hard
to detect and would greatly pollute a selection of test
samples. As such, a good way to obtain a controlled
set of samples is to manually pack a control set of un-
packed executable files using different packers. For
this experiment the starting set of unpacked files was
created from approximately 600 files obtained from
a freshly installed Windows 10 distribution that were
subsequently packed using the following twelve pack-
ers: aspack, mew, packman, pecompact, pelock, pe-
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tite, rlpack, telock, themida, upack, upx and yoda. This
operation yielded 5912 packed files (Table 1), with the
difference from the expected 7200 being explained by
not all packers being able to pack every original file,
with the most common limitation being x64 executa-
bles not being supported by the packer.

packer name successfully packed count
pecompact 461

upack 661
rlpack 636
upx 600

telock 413
yoda 427

themida 560
petite 426
aspack 429
mew 429

packman 432
pelock 421

Table 1: Manually packed data-set

Results Our clustering method managed to cluster
85% of packed files (Figure 3), since our criteria is a
minimal of 4 elements with appropriate distance by
cluster, 15% of our samples could not be clusteredwith
3 others similar samples. This ratio of 85% of clus-

tered samples is an encouraging result. To focus first
on well clustered results (Table 2), we successfully
clustered 11 of the 12 packers we initially picked for
this study with an average success of 86%. We have 5
packers that are fully well-clustered meaning that we
regroup in one cluster all samples of the same packer.
One of these packed files (telock) have been clustered
into 2 separate clusters (clusters 3,4), we suspect that
it is due to variations in the unpacking procedure de-
pending on the file that is packed. Only one of these
packers has not been clustered and it is due to limit of
static analysis approach. We use standard static anal-
ysis approach to disassemble programs and pecom-
pact jumps to register values in its unpacking proce-
dure. This limit can be surpassed by using a static
analysis tool that tracks register values by symbolic
analysis.

Figure 3: Manually packed samples clustering ratio

cluster № packer name count packer family ratio
1 upack 446 67%
2 themida 560 100%

3,4 telock 388 94%
5 1%

5 petite 426 100%
6 aspack 429 100%
7 upx 556 93%
8 mew 428 99.8%
9 packman 432 100%
10 pelock 421 100%
11 rlpack 455 72%
12 yoda 426 99.9%

Table 2: Manually packed well clustered samples

cluster № packer count

14
pecompact 2

upack 1
upx 2

Table 3: Manually packed wrongly clustered samples
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packer name unclustered count unclustered ratio
pecompact 459 99.6%

upack 215 33%
rlpack 181 28%
upx 42 7%

telock 20 5%
yoda 1 0%
total 928 15.7%

Table 4: Manually packed unclustered samples

3.2 Zeus malware case

In this use case we want to show how this clutering
allows us to match our ambition (see Section 1.2) on
a reduced set of malware samples. To do so we want
to cluster some goodware that are packed (here they
are part of the previous set of goodware that we pack
by ourselves) with somemalware that is packed in un-
known ways. By doing this we want to show that we
can cluster Zeus packed sampleswith goodware pack-
ers. This is to conclude thatwe have successfully iden-
tified a class of packers that is used to pack both harm-
less programs and Zeusmalware. We alsowant to use
this test to compare our clusteringmethodwith theDIE
packer detection tool.

We focus on Zeus/Zbot malware which is a trojan
designed to steal banking information. It is also known
to be packed by different packers. In this experiment
we won’t control which packers are used to pack the
Zeus malware payload, we will pick some Zeus sam-
ples randomly frommultiple sources and only check if
they are packed. Checking if Zeus samples are packed
is not a trivial issue andwe use dynamic analysis to en-
sure this.

Confidence in packing properties The notion of
wave is developed here [13] and is built to identify self-
modifications of a program’s code. It consists in run-
ning a program in a sandbox and trace its execution.
That is, if a program allocates memory or rewrites its
own code in order to then execute these newly instan-
tiated instructions, this modification operation is writ-
ten into a what is called a wave. These waves describe
exactly what kind of obfuscation a packer apply, the
concept of wave is more inclusive than just consid-
ering packers but it considers any packer-like behav-
ior. Thus, by analyzing our Zeus malware with such a
process, we can identify whether they use packer-type
procedures or not by the fact they have at least one
rewriting wave. We also completed this approach by
adding files detected by DIE as packers.

Samples selection We have recovered 1000 ran-
domly picked unique samples of the Zeus malware
from MalwareBazaar[14] and VxUnderground, these
malware are labeled as Zeus on these sites. This label-
ing has been confirmed by VirusTotal which is an on-
line antivirus aggregator. We therefore consider with

a high degree of certainty that our test samples all
match the Zeus malware. These Zeus files were an-
alyzed by the DIE[2] packer detection tool in order to
compare the DIE labeling with our clustering. Addi-
tionnaly, with these files we clustered our 600 manu-
ally packagedUPX to see if some cluster contains both
goodware packers and packed Zeus samples. Among
these data, 685 were named by DIE, our 600 manually
packed UPX and 85 Zeus samples.

Figure 4: Zeus and UPX packed samples clustering ra-
tio

Results We clustered 93% of our elements (see Fig-
ure 4) into 10 clusters. These 10 clusters are decom-
posed into 3 clusters ofmore than 400 elements (clus-
ters 8,9,10) and 7 much smaller clusters (see Table 5).
Clusters 8 and 10 are each composed of more than
half of the copies of UPX that we had packaged our-
selves. It seems that we have clustered, with these
manually packed UPX samples, some Zeus samples
which are packed using a packer very similar to UPX,
if not UPX itself. This conclusion is reinforced by DIE’s
labeling of about 25% of the Zeus samples in cluster
8 as UPX, as well as some Zeus copies as UPX for
cluster 10. Looking at these clusters we can see that
while DIE agrees in general for most elements, it does
not draw the same conclusions as our clustering al-
gorithm, even on classical packers like UPX. It is dif-
ficult to draw more conclusions at this stage of our
work because we were not able to obtain labels with
more confidence for these elements. In any case, we
can show here that for labeling packers on malware
DIE performs poorly. Cluster 4 is smaller but it is inter-
esting to see that our clustering here is very consistent
with DIE labeling. It seems that we have identified here
with our clustering a class of packers corresponding to
MPRESS with 100% success according to DIE.
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cluster № DIE information Manually packed upx count
1 ∅ 0 41
2 ∅ 0 17
3 upx: 2 0 42
4 mpress: 13 0 13
5 ∅ 0 10
6 upx: 1 0 7
7 ∅ 0 6
8 upx: 434 381 436

9 upx: 1 0 508spoon studio: 3

10 upx: 221 219 407spoon studio: 11

Table 5: Zeus and UPX well clustered samples

4 Conclusion

Our method based on transformed CFG sub-graphs
seems promising. Relying on the unpacking function
extracted statically from the files to cluster similar
packers gives very good results for our controlled test
set (Section 3.1). Our method performs matching on
packers in a completely generic way. Thus we can ap-
ply it to the case of custom packers used by malicious
files. The case study in Section 3.2 is a clustering of
packers used by Zeus malware. We managed to clus-
ter goodwaremanually packed by uswith Zeus packed
malware files. It seems that our verification with the
DIE tool supports our clustering of UPX for Zeus. More-
over, if we believe the DIE results we have clustered
another sample of Zeus which is packed by MPRESS.
It would be now a question of studying the clusters
of Zeus not recognized by DIE, which could mean that
we identified another common packer that neither us
nor DIE have exposed (by lack of clustered data in our
case). These clusters could also signify that it is a cus-
tom packer used by Zeus as in the article [15]. We are
now thinking of clustering larger datasets to achieve
our ambition presented in Section 1.2 which would im-
prove the decision of malware detection engines.
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