
THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

Syslogk Rootkit. Executing Bots
via ”Magic Packets”

David Álvarez-Pérez1
1Avast Software s.r.o. (Gen Digital Inc.) Pikrtova 1737/1a, 140 00 Praha 4, Czech Republic.

This paper was presented at Botconf 2023, Strasbourg, 11-14 April 2023, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
cb It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract

The proliferation of open source Linux kernel
rootkits allows malware writers to speed up the
process of developing complex malware. This
study analyzes the Syslogk Linux kernel rootkit
family which reuses code of Adore-Ng. Sys-
logk allows to remotely execute arbitrary com-
mands and a hidden bot in different modes via
"magic packets". Analyzing "magic packets" in
reasonable time is a challenging task. Further-
more, the hidden bot, implements a proxy mode
that allows to hide the IP address of the at-
tacker while executing commands in other in-
fectedmachines. This newbotnet structure can
also inspire future Linux threats, including IoT
threats.

Keywords: syslogk, rootkit, botnet, netfilter.

1 Introduction

In early 2022, Jan Neduchal and I, discovered Sys-
logk Linux kernel rootkit hiding a backdoor identified
as Rekoobe. Such backdoor, instead of being contin-
uously running in the system, is remotely executed by
the attacker via "magic packets"[1].

Later, based on a Vladimír Žalud rootkit detection,
in October 2022, I identified a new variant of Syslogk[2]
hiding a bot[3] that can implement multiple fake ser-
vices (see Table 2). In this second version of Sys-
logk, the bot supports a proxy mode (see Table 1) and
stealth communication messages faking Mozilla Fire-
fox and Apache 2 (see Appx. 3 p. 46 making harder to
identify the attacker and exposing a new botnet archi-
tecture based on "magic packets".

The present paper analyzes Syslogk rootkit family
and addresses the problem of analyzing "magic pack-

ets" in reasonable time. The rest of the paper is struc-
tured as follows.

• Description of the problem and possible solu-
tions

• The implementation experimented and its evalu-
ation

• Discussion on the results

• Related work

• Future work

• Conclusion

2 Problem and possible solutions

Open sourcemalware allowsmalwarewriters to speed
up the development process[4][5][6][7]. It is very fre-
quent to see code reuse from one Linux kernel rootkit
to others, specially in those caseswhere the code snip-
pets are complex to write or it’s hard to find an alterna-
tive equivalent code.

At Avast, we experienced an increase in the num-
ber of rootkits that registers NetFilter hooks[8] for im-
plementing "magic packets"[9].

The problem is that, in some cases, it is complex
to determine the actions that an attacker can trigger
remotely via "magic packets" in reasonable time.

For the current existing malware, it is quite sim-
ple to identify the basic blocks that implements the
actions executed by the "magic packets". In practice,
those typically execute actions in user mode space
via call_usermodehelper[10][11] kernel API. So, the ba-
sic blocks containing cross-references to it are usually
the target of the "magic packets". To put it differently,
those calls are a side effect in the NetFilter hooks.

David Álvarez-Pérez, Syslogk Rootkit 41



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

The analysis of "magic packets" is a similar prob-
lem to other more researched: determining if an un-
safe function is causing a vulnerability in the pro-
gram. Since, in both cases, the analyst must to de-
termine the partition of the input space that is able to
trigger the special case.[12] The main difference be-
tween both problems is that "magic packets" are more
likely to be implemented to complicate the analysis.
In fact, the attacker can implement highly data-flow
sensitive "magic packets". For instance, during the
"magic packet" parsing, Sysglok checks some inter-
nal variables whose value depends on other "magic
packets"[1][13].

So, when the analyst identifies a basic block that
is likely to be triggered by "magic packets", should an-
swer, basically, the following three questions.

• Can be, this candidate basic block, reached via
"magic packets"?

• Are the "magic packets" sufficient for reaching
it?

• Which restrictions must to satisfy the "magic
packets" for reaching the basic block?

For solving the problem of analyzing magic pack-
ets, I explored the following options:

• Develop a magic packet fuzzer.

• Deploy a Linux kernel debugging environment.

• Trace the NetFilter hooks using Kprobes.

Fuzzers has demonstrated being very effective
finding vulnerabilities. But when analyzing "magic
packets" we can assume a challenging scenario for
fuzzing. For instance, Syslogk performs comparisons
against encrypted values. The constrains generated
by such comparisons will be infeasible to solve us-
ing a theorem prover[14] (i.ex. break AES encryp-
tion). Therefore, fuzzing can be helpful assisting the

analysis, but a fully automatic solution can be not
feasible[15][16].

Deploying a debugging environment is a man-
ual solution that can aid the static analysis of the
"magic packets". But deploying a kernel debugging
environment[17] requires time and doesn’t produce
test cases easy to reproduce by others.

As discussed next, I decided to fully analyze the
"magic packets" by tracing the rootkit.

2.1 Proposed solution on analyzing magic
packets

Fortunately, modern Linux operating systems incorpo-
rates a Kernel tracing facility called Kprobes[18][19].

This facility allows to develop a kernel driver for
tracing the value comparisons against the packet and
dynamically printing these traces. This way, the an-
alyst can produce two programs: a "magic packet"
sender[13] and a driver[20] for tracing the packets.
This way, apart of the documentation, the analyst gen-
erates a proof of concept (PoC) code that others can
easily check without having too much knowledge on
the specific rootkit. Apart from that, those Kprobes
can be also used for analyzing other malware cam-
paigns that simply changes the keys, and so on.

An additional problem is that this kind of rootk-
its tend to use some techniques for protecting them-
selves, (for instance, Syslogk removes itself from the
list of loaded modules maintained by the operating
system)[21]. This kind of protections are usually easy
to defeat by patching the program. I provide a Python
script for disabling such protection in Syslogk rootkit.

2.2 Figures and tables

Figure 1: Tracing command ID 99

42 David Álvarez-Pérez, Syslogk Rootkit



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

Argument Description
The bot listens for one request and
ends the execution.

cb The bot enters in a loop receiving
callback notifications for handling requests.

port Fixes the port for the aforementioned
commands.

proxy Acts as a proxy for executing commands
in other infected machines.

Table 1: Bot commands.

Protocol ID Address Description
0 0x00406286 Other protocol
1 0x00406275 tcp
99 0x00406299 ohttp
2 0x00405CAE ssl
3 0x00405CCF https
4 0x00405CF0 smtp

Table 2: Bot component. Supported protocols or fake
services".

Variables CMD 1 CMD 2
logininfo Source address Source address
logininfo+4 N/A Source port
logininfo+6 Destination port Destination port
Bot port 0 0
CMD status 1 3
state normal proxy

Table 3: Syslogk Rootkit. Internal variables.

Hook PF Hook Num Priority
nfinpro TCP 1 INT_MAX
nfout TCP 3 INT_MIN
nfin TCP 1 INT_MIN

Table 4: List of Syslogk rootkit NetFilter hooks.

ID Command
0 /etc//tp-b8PbR2v1ms/sm1v2RbP8b cb
1 /bin/sh -c /etc//tp-b8PbR2v1ms/sm1v2RbP8b
2 etc//tp-b8PbR2v1ms/sm1v2RbP8b proxy
99 /bin/sh -c command_to_execute_here

Table 5: List of commands executed via "magic pack-
ets".

3 Implementation and evaluation

This study propose the following generic steps for ef-
ficiently analyzing "magic packets":

1. Identify the NetFilter hooks involved in network
traffic packet analysis and/or modification.
I identified three NetFilter hooks:

• nfin. It is responsible of retrieving the port of the
hidden bot.

• nfout. It is responsible of properly updating the
outgoing packets (i.ex. proxy mode).

• nfinpro. It implements the magic packets pars-
ing. If the packet fits the requirements, a
Linux work executes the command in usermode
space.

The NetFilter hooks definition allows to identify the
input space and the candidate paths for reaching the
actions triggered via "magic packets". In this case, the
input space consist in IP/TCP packets Table 2 and all
the candidate paths belongs to nfinpro NetFilter Hook.
Notice that dependencies out of the scope of nfinpro
can be systematically identified during the analysis.

2. Identify the basic blocks that implement actions
candidate of being executed via "magic packets".
In the case of Syslogk rootkit, all the commands Ta-
ble 2 are executed via call_usermodehelper API. By an-
alyzing the cross-references to this API, it is straigth-
forward to determine that the function start_exec re-
ceives the Command ID in the esi registry of the pro-
cessor which is hardcoded on each call to it. Also, all
of those calls to start_exec take place into the nfin-
pro NetFilter hook so, this analysis reveals: the input
space, the candidate paths, the constraints, and finally
the target basic blocks containing calls to the user-
mode actions.

3. Remove anti-analysis protections from the mal-
ware.
Before inserting the Syslogk rootkit Linux kernel mod-
ule for the analysis, it is convenient to patch the func-
tion that hides the module (offset 0xAB5). For in-
stance, by replacing the first byte of the function by the
x86 and x86_64 RET instruction (opcode 0xC3).

4. Build templates for themagic packets according
to the supported protocols.
In the case of Syslogk, the "magic packets" consists in
TCP/IP packets. The PF flag set to 2, in the NetFilter
hooks, indicates Internet Protocol. While the compar-
ison against 6 in the Protocol field of the IP packets
(offsets 0x1821 and 0x0F4D) indicates TCP protocol.
So, for implementing those "magic packets" the tem-
plate consists in two arrays of 5 double-words. The
first array for the IP header and the second one for the
TCP header. The first nibble of the IP header indicates
the IP version, for instance, 4. And the second one, the
length of the IP header specified in double-words. 5
double-words in this case. Also, the byte at offset 9
(starting the count by zero), indicates the protocol. It

David Álvarez-Pérez, Syslogk Rootkit 43



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

will be set to 6, in other words, it will be set to TCP pro-
tocol. The rest of the bytes will be initialized to NULL
(0x00).

5. Extract the requirements for the "magic pack-
ets".
By statically analyzing the Syslogk nfinpro NetFilter
hook, it is possible to determine the requirements for
the "magic packets". The procedure consists in to edit
the "magic packet" template with the appropriate val-
ues, extracted from the constraints found in the nfinpro
function flow-graph. Each data added to the template
is considered an hypothesis that must to be checked
by tracing the module with Kprobes. The trace must
print the values evaluated in the condition, and the path
taken after such evaluation. Kprobes are also useful
for printing values that are computed inmemory by the
rootkit. For instance, in the case of Syslogk rootkit, it is
useful to print encrypted and then encoded values for
adding those to the magic packet’s template.

The result of the previous procedure consists in the
following elements:

• Unprotected version of the rootkit.

• Script for sending "magic packets".

• Kprobes based Linux kernel module which dy-
namically traces the "magic packets" parsing.

3.1 Evaluation

By systematically applying the proposed method I ex-
tracted the "magic packets" associated to each com-
mand in reasonable time.
The template fixes the IP header, TCP header and data
section of the packet as follows.

• Version and IHL: 0x45

• Protocol: 0x06

• Data Offset : 0x5

The Data Offset multiplied by 4 indicates the offset
from the start of the TCP header to the data of the
packet.

Next, the specific data for each command is dis-
cussed.

• Command id 99 Fig. 1 magic packet require-
ments:

– Reserved: 0x02.
– Packet data:

* Magic value: 0x44332211
* Key: 0x756a656f6972746662767300
* 20 bytes of padding.
* The Arbitrary bash command to exe-

cute.
* Addpadding, if necessary, for having, at

least, 293 bytes of data.

* As last step, it is required to flip the last
bit for all the bytes in the data.

• Command id 2 magic packet requirements:

– Running proxy mode:

* Identification: Any from the whitelist
(see Appx. 1 p. 45).

* Reserved, Flags and Window Size:
0x500803FE

* Data: "__step1__" encrypted and then
encoded with the function FormatEn-
code (see Appx. 2 p. 46).

– Updating values of logininfo Table 3:

* The magic packet must to be sent just
after running proxy mode.

* Identification: Any from the whitelist
(see Appx. 1 p. 45).

* Reserved, Flags and Window Size:
0x500803FE

* Data: "__step3__" encrypted and then
encoded with the function FormatEn-
code (see Appx. 2 p. 46).

• Command id 1 magic packet requirements:

– Without killing previous instances:

* Identification: Any from the whitelist
(see Appx. 1 p. 45).

* Sequence Number: Any from the
whitelist (see Appx. 1 p. 45)

* Reserved: 0x0

* Flags 0x02

* Window Size: 0x03FE

– Killing previous instances:

* Identification: Any from the whitelist
(see Appx. 1 p. 45).

* Packet data:
· Magic value: 0x0000002C
· Key: "__step1__" encrypted and then
encoded with the function

· 6 bytes of padding.

Notice that commands with id 1 and 2 (used for
starting the bot) sets the attacker logging information
Table 2. Such logging information determines if the
next magic packets received by Syslogk rootkit comes
from the attacker or should be not taken into account.
The nfout NetFilter hook Table 4 is responsible of prop-
agating those values in Proxy Mode Table 1.

44 David Álvarez-Pérez, Syslogk Rootkit



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

4 Discussion

Syslogk uses well-known Linux Kernel Rootkit tech-
niques and even reuse code from other kernel rootkits
(i.ex. Adore-Ng[7]).
Contrary to its predecessors, Syslogk integrates the
usermode malicious component with the kernel mod-
ule, implements fake services for connecting with the
bot[1] and uses "magic packets" in a nobel proxy mode
Table 1.
All these features and peculiarities can inspire other
threat actors for developing stealth and adaptive bot-
nets. A manual approach was sufficient for analyz-
ing the Syslogk rootkit "magic packets" in reasonable
time but, taking into account that the complexity of the
"magic packet" parsing increases in new versions, it is
necessary researching more on how to efficiently ana-
lyze "magic packets".

5 Related work

Linux kernel-level rootkits can be distributed in multi-
ple forms depending on how those access to kernel
space. The more frequent method is to distribute the
rootkit as a Linux kernel module.[22] For modifying the
behavior of the system, the rootkit can approach in
two ways, giving place to the following classification:
Kernel Object Hooking (KOH) rootkits, if it hijack ker-
nel control flow, and Dynamic Kernel Object Manipula-
tion (DKOM) rootkits, if it subvert the kernel by directly
modifying dynamic data.[23] Adore-ng rootkit imple-
ments both methods. It removes itself from the mod-
ule list by changing prev and next pointers of module-
struct during Adore-ng’s initialization[21] but also hi-
jack kernel hijacks the following functions.[24]

• The routines used by the Virtual File System
(VFS) to intercept (and modify) calls that access
files in both the /proc file system and the root file
system.

• The function for appending the last TCP/IP ver-
sion 4 connections to /proc/net/tcp "sequential"
file.

Reptile is other LKM-based x86_64 kernelmode rootkit
that includes an encrypted backdoor which can spawn
a reverse shell upon receival of a magic packet[9] Sys-
logk reuses the code of Adore-Ng for hiding itself, the
malicious files and the TCP connections from the host.
It also implements "magic packets" but those are com-
plex and integrates the rootkit with the malicious hid-
den bot. [25]

6 Future work

The proposed procedure allows to analyze the Syslogk
"magic packets" in reasonable time and produces suf-
ficient material for other researchers to reproduce the
tests.

The main problem of this approach is that it is
fully manual. More research is needed to provide
a semi-automatic solution. I suggest exploring so-
lutions based in symbolic execution[26], concolic
execution[27] and fuzzing[12] to provide a semi-
automatic approach.

7 Conclusion

Syslogk reuses code from Adore-Ng[7] for hidding
the malicious artifacts. It also implements complex
"magic packets" that can be time-consuming to an-
alyze. This study provides the procedure for analyz-
ing Syslogk "magic packets" in reasonable time by us-
ing Linux Kprobes[19][18][20]. This paper also ana-
lyzes the proxy mode of the bot hidden by Syslogk
rootkit. This new feature of controlling bots via "magic
packets", indirectly, using a proxy mode, can inspire
other malicious actors for creating new botnet archi-
tectures.

Appendices

Appendix 1

Syslogk rootkit word and double-word values
whitelists for the magic packets.

IP header Identification field whitelist:
0x27E5, 0x6CC8, 0xF575, 0xEAEC, 0xF24A, 0xF322,
0x5044, 0x85BF, 0x60F2, 0x4D19, 0xCEDA, 0xAD05,
0x332F, 0xADB6, 0x99BD, 0xD2D6, 0xF02D, 0xBB1D,
0x4DC0, 0x7F95, 0xE04B, 0x75A0, 0xB48F, 0x35F1,
0xB0B7, 0xC5D2, 0x3DBD, 0xFF15, 0x4218, 0x2BF7,
0xB304, 0x66CC, 0x8BC9, 0x9C4E, 0x5A7B, 0xDD7E,
0x3B14, 0x4ED0, 0xB518, 0xF07E, 0x2D0C, 0x58FC,
0x9966, 0x8989, 0x357F, 0xBFE8, 0x6C83, 0x39AC,
0xDF2A and 0x4AB3.

TCP header Sequence number field whitelist:
0x36DF0DBE, 0x2E850DA1, 0x31307614,

0x622E52A2, 0x90F411A4, 0x92D8543B, 0xDA53E996,
0xC8D4B32E, 0x221356CC, 0x28A5AC2C, 0x3174D34E,
0x000A23AA, 0xC64B5258, 0x6CBD8489, 0xA5804552,
0x5B0D383A, 0x0E2E5552, 0xE5C2B533, 0x161AA6C4,
0x582F9043, 0x67E4591A, 0x8D252200, 0x0E454D90,
0x949FBB70, 0x9A98542C, 0x58E7A911, 0x6D5B67A9,
0x8C6901F1, 0x32E42AB0, 0x8D9B8A6B, 0x136BE259,
0xD21A9B88, 0xE13D60D5, 0xD766EB63, 0xBD7D9E51,
0x8D65C47E, 0x158BF6F0, 0xBB96784E, 0x388A9A3E,
0x3F104C3, 0x78C296BB, 0x26707F61, 0xB6703DB8,
0x45A91E39, 0xE264B6C6, 0x71C6894E, 0x9A67E79E,
0x64ACC1CF, 0x4E85FFF8, 0xA1BB5068, 0x10C04997,
0xD27AAB8B, 0xD8B36A23, 0x8DEEE21A, 0x0295CE1D,
0x386D0E91, 0xD1F20EE9, 0xC788438B, 0x8C865CEB,
0xEB17B69E, 0x1C6968A9, 0x6277EF09, 0xB01C9C00,
0xD5865D0E, 0xD384344C, 0xD505F015, 0x05333FBD,
0x811298A3, 0x3584A50F, 0x5C40977A, 0x5549FB3E,

David Álvarez-Pérez, Syslogk Rootkit 45



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

0xA5A54B01, 0x3CCABC0E, 0x3D990DFE, 0x62455526,
0x8AF90BE3, 0x2F9AC244, 0x892A6001, 0xD2CFF2C4,
0x77EE4C5B, 0x0C7B225A, 0x3F769119, 0x0B9652AB,
0x10B98C3B, 0x3CFB293D, 0x45AAA237, 0x8D837B67,
0x86785F52, 0xE1644B21, 0x3BB5DFD7, 0xD-
CDEA543, 0x61C9DEE3, 0x43AD90EA, 0x9CCE04DA,
0x3AB88DED, 0x2D0B16E7, 0xAA00A321, 0x276749B6,
0xE937E089 and 0x24F70247

Appendix 2

Encryption functions:

• SimpleEncodeDecode
- Encryption algorithm: RC4
- Label: rc4_key
- IV: 12 A3 BB 47 53 5E C0 D5 39 53 A6 FB AD 43
F5 73
- Key: 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7
AB 76 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C
A4 72 C0 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1
71 D8 B1 15 04 C7 23 C3 18 96 05 9A 07 12 80 E2
EB 27 B2 75 19 83 2C 1A 1B 6E 5A A0 52 3B D6
E3 29 E3 2F 84

• SimpleEncodeDecode_0
- Encryption algorithm: RC4
- Label: L7_rc4_key
- IV: 12 A3 FE 47 93 5E 12 D5 39 53 22 FB BD 43
98 73
- Key: 07 FD 36 26 2C 3F F7 CC 34 AB E5 71 51 08
01 15 63 7C F2 7B C9 6B 6F C5 30 09 67 2B 00 17
2B 76 1A 82 16 7D 0A 59 47 F0 AD DB A2 AF AC
14 72 20 19 83 12 1A 1B 6E 5A A0 52 37 D6 E3 19
13 2F 14 04 C7 55 13 18 96 05 9A 07 23 80 02 0B
27 32 75

• SimpleEncodeDecode_1
- Encryption algorithm: RC4
- Label: manager_rc4_key
- IV: 19 03 12 DA 1E 6E E5 A0 69 53 82 BB BD F3
98 76
- Key: 07 FD 36 26 2C 3F DD 3C 34 AB B5 A1 51
08 91 15 B7 BD 93 D6 F6 5F F7 CC 44 A5 C5 F1 71
D8 B1 F5 1A 82 16 ED 0A 59 2B 73 AE F3 25 7D
35 8B 72 20 19 03 12 DA 1E 6E E5 A0 52 37 46 E3
99 13 2F 14 04 C7 55 63 18 96 05 9A E7 23 80 02
0B 27 32 75

• EncodeDecode
- Encryption algorithm: XOR
- Label: xorkey
- Key: 1101link

• EncodeDecode1
- Encryption algorithm: XOR
- Label: xorkey1
- Key: d3i9szdn

• EncodeDecode2
- Encryption algorithm: XOR
- Label: xorkey2
- Key: 40239jig

• EncodeDecode3
- Encryption algorithm: XOR
- Label: xorkey3
- Key: n430jdfk

• EncodeDecode4
- Encryption algorithm: XOR
- Label: xorkey4
- Key: vndia323

• EncodeDecode5
- Encryption algorithm: XOR
- Label: xorkey5
- Key: dnj23fds

• FormatEncode and FormatDecode
- Encryption algorithm: AES
- Label: key
- Mode: CTR (Counter mode)
- IV: 12 A3 BB 47 53 5E C0 D5 39 53 A6 FB AD 43
F5 73 - Key: 60 3D EB 15 15 3A 71 5E 2B 73 AE F3
85 7D 75 8B 1F 55 2C 57 3E 61 58 D7 2D 98 11 A3
39 14 DE FE

Appendix 3

Simulation of legitimate traffic:

• Structure of the packet’s data simulating Mozilla
Firefox:
Connection: keep-alive\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64;
rv:52.0) Gecko/20100101 Firefox/52.0\r\n
Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Encoding: gzip, deflate\r\n
Connection: keep-alive\r\n
Content-Type: application/x-www-form-
urlencoded\r\n
POST /index.html HTTP/1.1\r\n
Host: HOST_GOES_HERE\r\n
Content-Length: CONTENT-LENGTH_GOES_HERE
\r\n\r\n

• Structure of the packet’s data simulating Apache
Tomcat:
HTTP/1.1 200 OK\r\n
Date: THE_DATETIME_GOES_HERE GMT\r\n
Content-Length: CONTENT-LENGTH_GOES_HERE
\r\n\r\n
Connection: close\r\n
Cache-Control: no-cache\r\n\r\n

• Structure of the packet’s data hiding messages
generated by the function FormatEncode:
GET /index.html HTTP/1.1\r\n
Host:host\r\n
FORMAT_ENCODED_DATA \r\n
Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,*/*\r\n
Cookie: ID=
Connection: keep-alive\r\n

46 David Álvarez-Pérez, Syslogk Rootkit



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

Accept-Encoding: gzip, deflate\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64;
rv:52.0) Gecko/20100101 Firefox/52.0\r\n
\r\n\r\n

Acknowledgment: I want to thank my colleagues
of Avast (Gen Digital Inc.). Especially the Avast Threat
Labs teamand, more specifically, the following people:
Sigudur (Siggi) Stefnisson, Luis Corrons, Jiří Sejtko,
Jakub Křoustek, Jan Širmer, Bohumír Fajt, Vladimír
Žalud, Ondřej David and Jan Neduchal. Thank you for
making this research possible. Thank you for your help
and support.

Author details

David Álvarez-Pérez

Avast Software s.r.o. (Gen Digital Inc.)
Pikrtova 1737/1a, 140 00 Praha 4, Czech Republic
david.alvarez@avast.com

References

[1] “Linux Threat Hunting ‘syslogk’ a kernel rootkit
found under development in the wild.” Avast. Ac-
cessed: 2023-02-26.

[2] “Syslogk rootkit malware sample.” VirusTotal. Ac-
cessed: 2023-02-26.

[3] “Syslogk bot malware sample.” VirusTotal. Ac-
cessed: 2023-02-26.

[4] “Reptile linux kernel rootkit.” https://github.

com/f0rb1dd3n/Reptile. Accessed: 2023-02-
26.

[5] “RKDuck linux kernel rootkit.” https://github.

com/QuokkaLight/rkduck. Accessed: 2023-02-
26.

[6] “KoviD linux kernel rootkit.” https://github.

com/carloslack/KoviD. Accessed: 2023-02-26.

[7] “Adore-NG linux kernel rootkit.” https://github.
com/yaoyumeng/adore-ng. Accessed: 2023-02-
26.

[8] R. Rosen and R. Rosen, “Netfilter,” Linux Kernel
Networking: Implementation and Theory, pp. 247–
278, 2014.

[9] J. Junnila, “Effectiveness of linux rootkit detection
tools,” 2020.

[10] “Toy Linux kernel rootkit with basic key-
logging and backdoor capabilities.” https:

//github.com/soad003/rootkit/blob/master/

rootkit.c#L136. Accessed: 2023-02-26.

[11] “Out-of-Sight-Out-of-Mind-Rootkit linux kernel
rootkit.” https://github.com/NinnOgTonic/

Out-of-Sight-Out-of-Mind-Rootkit/blob/

master/osom.c#L211. Accessed: 2023-02-26.

[12] X. Zhu, S.Wen, S. Camtepe, and Y. Xiang, “Fuzzing:
a survey for roadmap,” ACM Computing Surveys
(CSUR), vol. 54, no. 11s, pp. 1–36, 2022.

[13] “Syslogk research tools.” https://github.com/

avast/ioc/tree/master/SyslogkRootkit/

Research%20ToolsAvast. Accessed: 2023-02-26.

[14] “Microsoft z3 theorem prover.” https://github.
com/Z3Prover/z3. Accessed: 2023-02-26.

[15] A. BOVE, A. KRAUSS, and M. SOZEAU, “Partiality
and recursion in interactive theorem provers – an
overview,” Mathematical Structures in Computer
Science, vol. 26, no. 1, p. 38–88, 2016.

[16] G. Sutcliffe and C. Suttner, “Evaluating general
purpose automated theorem proving systems,”
Artificial Intelligence, vol. 131, no. 1, pp. 39–54,
2001.

[17] R. Love, Linux Kernel Development: Linux Kernel
Development _p3. Pearson Education, 2010.

[18] “Kernel Probes documentation.” https://docs.

kernel.org/trace/kprobes.html. Accessed:
2023-02-26.

[19] R. Krishnakumar, “Kernel korner: kprobes-a kernel
debugger,” Linux Journal, vol. 2005, no. 133, p. 11,
2005.

[20] “Spotify KProbes examples linux kernel mod-
ule.” https://github.com/spotify/linux/

tree/master/samples/kprobes. Accessed:
2023-02-26.

[21] J. Wang, P. Zhao, and H. Ma, “Hacs: A
hypervisor-based access control strategy to pro-
tect security-critical kernel data,” in 2nd Interna-
tional Conference on Computer Science and Tech-
nology (CST 2017). Guilin, China, DOI: https://doi.
org/10.12783/dtcse/cst2017/12516, 2017.

[22] C. Kruegel, W. Robertson, andG. Vigna, “Detecting
kernel-level rootkits through binary analysis,” in
20th Annual Computer Security Applications Con-
ference, pp. 91–100, 2004.

[23] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Counter-
ing kernel rootkits with lightweight hook protec-
tion,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS
’09, (New York, NY, USA), p. 545–554, Association
for Computing Machinery, 2009.

[24] C. Kruegel, W. Robertson, andG. Vigna, “Detecting
kernel-level rootkits through binary analysis,” in
20th Annual Computer Security Applications Con-
ference, pp. 91–100, IEEE, 2004.

[25] M. L. Bak, L. Buttyán, and D. F. Papp, “Tee-based
remote platform attestation,”

David Álvarez-Pérez, Syslogk Rootkit 47

mailto:david.alvarez@avast.com
https://decoded.avast.io/davidalvarez/linux-threat-hunting-syslogk-a-kernel-rootkit-found-under-development-in-the-wild/
https://www.virustotal.com/gui/file/fab41d66a0e7ec0c703026084400c6800dc8b586e8ebb61b7873233c718a3298
https://www.virustotal.com/gui/file/5cecd5821be27accb73168b21324e833fd11aa08b846402c5d48ca057cd51826
https://github.com/f0rb1dd3n/Reptile
https://github.com/f0rb1dd3n/Reptile
https://github.com/QuokkaLight/rkduck
https://github.com/QuokkaLight/rkduck
https://github.com/carloslack/KoviD
https://github.com/carloslack/KoviD
https://github.com/yaoyumeng/adore-ng
https://github.com/yaoyumeng/adore-ng
https://github.com/soad003/rootkit/blob/master/rootkit.c#L136
https://github.com/soad003/rootkit/blob/master/rootkit.c#L136
https://github.com/soad003/rootkit/blob/master/rootkit.c#L136
https://github.com/NinnOgTonic/Out-of-Sight-Out-of-Mind-Rootkit/blob/master/osom.c#L211
https://github.com/NinnOgTonic/Out-of-Sight-Out-of-Mind-Rootkit/blob/master/osom.c#L211
https://github.com/NinnOgTonic/Out-of-Sight-Out-of-Mind-Rootkit/blob/master/osom.c#L211
https://github.com/avast/ioc/tree/master/SyslogkRootkit/Research%20Tools
https://github.com/avast/ioc/tree/master/SyslogkRootkit/Research%20Tools
https://github.com/avast/ioc/tree/master/SyslogkRootkit/Research%20Tools
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/kprobes.html
https://github.com/spotify/linux/tree/master/samples/kprobes
https://github.com/spotify/linux/tree/master/samples/kprobes


THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

[26] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execu-
tion techniques,” ACMComputing Surveys (CSUR),
vol. 51, no. 3, pp. 1–39, 2018.

[27] K. Sen, “Concolic testing,” in Proceedings of the
twenty-second IEEE/ACM international conference
on Automated software engineering, pp. 571–572,
2007.

48 David Álvarez-Pérez, Syslogk Rootkit


	Introduction
	Problem and possible solutions
	Proposed solution on analyzing magic packets
	Figures and tables

	Implementation and evaluation
	Evaluation

	Discussion
	Related work
	Future work
	Conclusion

