
THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

Yara Studies: A Deep Dive into
Scanning Performance

Dominika Regéciová
Gen

This paper was presented at Botconf 2023, Strasbourg, 11-14 April 2023, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
cb It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract
You probably know this scenario — you

spent a while analyzing new samples, which
was not easy, but you’re finally done. You also
created a neat Yara rule to match the samples,
and you’re ready to send it off and move on to
your next task (or lunch). But oopsie — the Yara
rule is warning of slowed scanning. Or your col-
league comments they do not like a particular
part and wants to be sure the rule is effective.

While working with Yara, I consulted with
many analysts about this problem. They knew
what they wanted to detect, but Yara was not
always helping them write the rules more effec-
tively. Based on my experience with algorithms
used in Yara, we worked together to find a solu-
tion to improve scanning speed and limit poten-
tial hurdles for future usage.

This paper presents five studies with de-
scriptions of the five problems, an explanation
of why Yara does not like the first solution, and
tips on what can be improved. Note that no sen-
sitive information is disclosed in this paper. All
studies were anonymized, so the general prob-
lem is the same, but there is no direct link to a
specific malware family mentioned, nor can it
be tracked.

Keywords: Malware detection, pattern matching,
performance, regular expressions, Yara.

1 Introduction

Yara is a well-known tool used by many analysts and
security specialists around the world. It is a very prac-
tical tool that can detect patterns based on static and
dynamic information, and it is simple to use — the syn-
tax of the rules is straightforward. Even a quick look

at the official documentation [1] or examples of pub-
licly available rules [2] can give you an idea of how the
matching works.

That is not the hard part of the process, however.
If you want to describe a specific malware family (the
most common use case for Yara), the situation is
much more complex than just simply putting together
a list of strings that need to be matched. Creating a
good rule that correctly detects a described family and
does not cause false positives requires skill and expe-
rience. Even after all the necessary static and behav-
ioral information is extracted and described in the rule,
another problem can arise — the performance of the
scanning. Yara has several mechanisms to detect po-
tential slow scanning and generateswarnings, such as
in Figure 1.

Running Yara with a rule over the input

directory (recursively)

$./yara rule.yar -r input_directory

warning: rule "family_XYZ" in rules.yar(x):

string "$re" may slow down scanning

Figure 1: Example of Yara rules warning

These warnings are based on heuristics that eval-
uate the quality of the rules. They inform us that the
rule could be written more effectively. They often lack
information on what change is needed to improve per-
formance. What makes the issue worse, the rules with
warnings can not be used in some systems like Virus-
Total Hunting1.

This paper aims to present several studies where
the performance of Yara rules was in question. Based
on the practical examples, the critical aspects that can
influence the scanning speed will be described as well

1https://www.virustotal.com/gui/hunting-overview

Dominika Regéciová, Yara Studies: A Deep Dive into Scanning Performance 1

https://www.virustotal.com/gui/hunting-overview

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

as a guide on how to approach them. The goal is to
make the lives of analysts easier. The goal is also to
create simple guidelines that are easy to follow and
use, so writing Yara rules can become more manage-
able.

Note that this paper is a follow-up to the previous
work — Yara: Down the Rabbit Hole Without Slowing
Down talk for Botconf 2022 [3] and Pattern Matching
in Yara: Improved Aho-Corasick Algorithm [4].

2 Introduction to Yara

This section briefly provides an overview of what Yara
is and how it works. If you are familiar with Yara, you
can skip this section. Or just go through it to ensure
you are familiar with all syntax constructs used in this
paper. More information can be found in the official
documentation [1].

Yara is a language and tool for pattern matching.
The patterns and additional context are described in
syntax units called rules. An example of one rule is
shown in Figure 2.

Every rule has three parts — meta information,
strings, and condition. The only mandatory part is
the condition that contains Boolean expressions. The
rule matches the file only if the condition is True.
The meta section usually includes the author’s name
and other information about the malware the rule de-
scribes. Strings can be text strings, regular expres-
sions, or hexadecimal strings.

rule example_rule

{

meta:

author = "Dominika Regeciova"

strings:

$str = "Hello World!" fullword nocase

$re = /abcd[x-z]/

$hex = { 63 62 61}

condition:

$hex at 0 or

$re or

$str

}

Figure 2: Example of Yara rule

In the rule named example_rule we have three ex-
pressions where at least one must be true to match a
sample. Either a text string that is delimited by non-
alphanumeric characters is found in the sample (while
ignoring the case of the characters), or regular expres-
sions are found or a hexadecimal string in starting po-
sition 0 (at the beginning of the file). If a samplemeets
the condition, Yara will match it and report it as a re-
sult.

To better understand the following studies, let us
summarize the algorithms used in the process, from
matching the strings to evaluating the condition on
specific samples, so you later understand how each
step can influence the evaluation of the rules. The en-

tire process can be split into four steps: atoms se-
lection from strings, creation of the Aho-Corasick au-
tomaton, bytecode engine run, and evaluation of con-
ditions.

2.1 Atoms Selection From Strings

From all the strings from all rules, so-called atoms
are selected. The atoms are substrings with lengths
from zero to four bytes. Yara has several heuristics
for choosing the most unique and, thus, most effec-
tive atoms. In our example, from a regular expression
/abcd[x-z]/, Yara will select the part abcd.

The heuristics, however, have their limits, and for
strings that are too general, such as /\w*/, even zero-
length atoms can be chosen. This is problematic be-
cause a later, much slower state does all thematching,
and the input is searched byte by byte. This will lead
to a warning about slowed scanning and limiting the
rule’s usability in systems like VirusTotal Hunting.

2.2 Aho-Corasick Automaton

All selected atoms are used to build a prefix tree called
the Aho-Corasick automaton. This automaton works
as a sifter — it quickly scans through every input and
finds all potential matches for the atoms. This is a
crucial step that influences how fast or how slow the
scanning is. If we have too many general atoms, many
— even each very byte, is selected as a potential match
and must be inspected further. We want to limit the
set of potential matches, so the rest of the evaluation
is much faster.

Figure 3: An example of the Aho-Corasick automaton
for atom abcd

The basic idea behind using Aho-Corasick automa-
ton is that it effectively matches every occurrence
of multiple strings simultaneously, even when the
matches are interleaving. Starting in the root state, the
automaton reads one symbol from the input at a time
and changes states accordingly. The atom is found in
the input if the final state is visited.

We can find multiple matches in the same position
because we have so-called failure functions. The fail-
ure function is used when there is no transition based
on a combination of the current state and input sym-
bol. The default action is to go to the root state and try
again. However, if the prefix of the other string was
partially matched, we can go there instead. All fail-
ure functions point to the root in our example because
there are different characters, but we can choose an-
other group of strings to demonstrate this situation.

Let us say we are looking for words she and his in
text shis. We started matching sh in the keyword she,
but now, we need e, but we have i instead. We could go

2 Dominika Regéciová, Yara Studies: A Deep Dive into Scanning Performance

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

to the root again or try to match his instead because
we know we already read h. And yes, we can find his in
the rest of the text.

2.3 Bytecode engine

The bytecode engine gets the list of potential matches
and verifies which are true positives based on the full
definition of strings (including modifiers like wide, no-
case, and others). This process takes time, so as we
discussed before, making a list as accurate as possi-
ble is a clever idea. Yara also reports the position in
the input if a match is found. In the example in Fig-
ure 4, there is a match in position 0x0.

0x0: abcdx => match

0x7: abcdf => not a match

Figure 4: example_rule found one match in the input

2.4 Condition Evaluation

Evaluating the condition for the whole rule is the last
step. It is important to remember that conditions are
evaluated after matching the strings. If you want to
limit the file size that you want to match with the file-
size function, it will not prevent the previous steps from
being executed when your rules match static strings.
The good news is there is short-circuit evaluation, so
changing the order of conditions can positively impact
performance.

In our example, we found the match on position
0x0, and the condition is evaluated as True.

3 Experiments

All studies will be explained based on algorithms used
in Yara, but often, the best arguments that positively
influence performance are numbers. For this reason,
all studies were tested, and the scanning speed was
measured. For tests, the upstream version of Yara in
its latest release (v4.2.3) was used [5].

Experiments were run on a server with the CentOS
Linux 7 operating system on a 64-bit architecture with
an AMD EPYC 7502 32-Core Processor with a clock
rate of 2.50GHz. Thememory speed was 3200MT/s.

Publicly available datasetswere used for scanning.
The first two were published in 2018 by Eduardo De
O. Andrade and contain 31,220 samples of cleanware,
and malware [6], consisting of 8.2 GB of binaries.
Please, be careful with handling the samples, mainly
the malicious samples. The second dataset is a large
14GB binary blob [7]. The third addition to the dataset
is a text file of The Entire Project Gutenberg Works of
Mark Twain by Mark Twain, available as a testing file
for the Regex Performance testing tool [8].

Together we scanned around 22 GB of data. The
most straightforward Yara rule was created to mea-
sure the minimal time in which Yara can go through

all the samples (Figure 5). The evaluation is very sim-
ple as all samples are evaluated as not matching right
away based on the condition. It is the fastest rule pos-
sible, taking around 36 seconds to scan all the sam-
ples in our dataset.

rule test_00

{

condition:

false

}

False rule

$ time ./yara 00.yar -r dataset/

real 0m36 .297s

user 0m57 .502s

sys 0m18 .932s

Figure 5: Experiments: the simplest "false" rule

Also, note that the following studies are just a se-
lection of common performance issues in Yara. As ad-
ditional resources, the Yara Performance Guidelines [9]
is an excellent page with many examples and tips on
how to use Yara more effectively.

4 Study I: Strings vs. Condition

The first example is a casewhere a few first byteswere
important, and the analysts wanted to match them.
Their rules looked like this:

rule test_01

{

strings:

$h00 = { 42 ?? ?? 00 00 61 62 }

condition:

filesize < 1KB and

$h00 at 0

}

Figure 6: Study I: the original rule

Note that the values of the bytes were changed,
but the idea remained the same. The reviewer, in this
case, did not particularly like the general nature of the
strings. Two arbitrary bytes with two zeroes bytes are
not particularly specific and unique; that is true.

The position specification can look like a good so-
lution, mainly with the limitation of the maximal size
of the input. However, we need to keep in mind how
Yara works. In the first phase, the statics strings are
searched, and the condition is applied after. So, in this
case, each input is scanned as a whole, and all strings
matches are returned. After that, we evaluate the file-
size function and search, which starts at position 0.
This is a relatively minor example, but this can princi-
pally grow exponentially and slow down scanning dra-
matically.

So, what is a better solution? If we have a spe-
cific position in mind, the best solution is to use in-
tXY or uintXY functions. You can match uint8(0) or

Dominika Regéciová, Yara Studies: A Deep Dive into Scanning Performance 3

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

unit32(3), where the number in the function name rep-
resents how many bits you want to match starting
with the offset or virtual address described as an ar-
gument. Be aware that both 16 and 32-bit integers are
little-endian. For big-endian, you can use functions in-
tXYbe() or uinXYbe(). The rewritten rule then looks like
the following:

rule test_02

{

condition:

filesize < 1KB and

uint8 (0) == 0x42 and

uint32 (3) == 0x62610000

}

Figure 7: Study I: the updated rule

There are two advantages of this change — we are
not scanning whole files but just a specified position
and if, and only if, the limit for the input size is met.
The difference in speed can vary due to the nature of
input files. During my initial investigation and on the
data set, the difference was around 9-10%. This may
appear insignificant, but the difference can be signifi-
cant when scanning large datasets.

$ time ./yara 01.yar -r dataset/

real 0m39 .934s

user 1m7.489s

sys 0m19 .024s

$ time ./yara 02.yar -r dataset/

real 0m36 .565s

user 0m56 .980s

sys 0m19 .227s

Figure 8: Study I: comparison

5 Study II: Potentially There

How do you want to match something that could be
there, but may not necessarily be there? This was the
case in our second study. The analyst was working
on samples that were creating a set of strings with
a combination of special characters that could be in-
cluded between two characters but sometimes were
missing. If the stringwere powershell and special char-
acter ^, generated strings would look like this: power-
shell, p^owershell, p^o^wershell, and so on. The first
version of the rule had a problem — warning about
slowing down scanning.

rule test_03

{

strings:

$re=/p\^?o\^?w\^?e\^?r\^?s\^?h\^?e\^?l\^?l/

condition:

$re

}

Figure 9: Study II: the original rule

This was a tricky case because the changing na-
ture of strings is problematic for all pattern-matching
tools. To maximally help Yara limit the potential set of
matches, we split the string definition into two — one
with a caret between the first two characters and one
without. This change will help Yara select substrings
p^o and po as atoms, and this is generally better for
the algorithms rather than using only one character p
as in the first version.

rule test_04

{

strings:

$re1=/p\^o\^?w\^?e\^?r\^?s\^?h\^?e\^?l\^?l/

$re2=/po\^?w\^?e\^?r\^?s\^?h\^?e\^?l\^?l/

condition:

$re1 or $re2

}

Figure 10: Study II: the updated rule

$ time ./yara 03.yar -r dataset/

warning: rule "test_03" in 03.yar(3):

string "$re" may slow down scanning

real 0m43 .650s

user 1m7.416s

sys 0m21 .658s

$ time ./yara 04.yar -r dataset/

real 0m37 .430s

user 0m59 .172s

sys 0m20 .318s

Figure 11: Study II: comparison

The second version is about 14% faster, just based
on the nature of pattern-matching algorithms used
in Yara. The meaning is the same, they match the
same samples, but the second version allows Yara to
be more optimized during the matching process and
makes it faster. Again, the difference in numbers is
not astronomical, but even 10-15% can save you a good
amount of time when dealing with extensive datasets.

6 Study III: Problematic Alterna-
tions

There are some instances where strings you want to
match are short, for example, just three bytes. In these
cases, be careful how you write them down because it
can impact Yara negatively. Let us say we want to de-
tect two hexadecimal strings — 44 03 33 and 44 2E 33.
It can be tempting to write them into one string as in
Figure 12.

However, this format is far from ideal for Yara. Not
that it cannot work with alternation during the atom
selections process. For instance, in a case such as
/(hey|bye)\.\w*/, it would prefer two atoms hey and
bye over searching just for a dot (\w cannot be part of
the atom). However, Yara does not concatenate the
strings together, even if it means the atoms would be

4 Dominika Regéciová, Yara Studies: A Deep Dive into Scanning Performance

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

longer. In this case, the alternation does not provide
enough information, and the problem is even bigger
because even values outside the alternations are just
one character in length. We want to match four or
more bytes for effective matching, but sometimes it
is not very easy. In this case, we want or need to work
with these strings. So, what can we do?

rule test_05 {

strings:

$hex = { 44 (03|2E) 33 }

condition:

$hex

}

Figure 12: Study III: the original rule

rule test_06 {

strings:

$hex0 = { 44 03 33 }

$hex1 = { 44 2E 33 }

condition:

$hex0 or $hex1

}

Figure 13: Study III: the updated rule

$ time ./yara 05.yar -r dataset/

warning: rule "test_05" in 05.yar(3):

string "$hex" may slow down scanning

real 0m46 .142s

user 1m12 .487s

sys 0m21 .040s

$ time ./yara 06.yar -r dataset/

real 0m37 .241s

user 0m59 .962s

sys 0m17 .781s

Figure 14: Study III: comparison

The solution here is simple yet effective. We
just need to write down both strings separately, even
though they are similar. The updated version of the
rule can look too descriptive, but it helps Yara under-
stand how it canwork with these strings. Withmore in-
formation, the selected atoms are longer (in this case,
they are identical to the strings themselves), and the
scanning process can be much more effective. The
updated version was about 19% faster on our dataset.

7 Study IV: Too General

Warnings about too many matches or about .*, .+ or .x,
indicate that one of the strings in the rule is too general
and needs to be narrowed down. This happens when
the prefix part is defined very loosely, like in Figure 15.
Regardless of how good the rest of the rule is, even
one general string can slow down a whole rule or even
a ruleset if you are usingmultiple rules at once. For this

reason, try to avoid using general regular expressions
for more context. It can backfire very quickly.

rule test_07

{

strings:

$re = /.*\. exe/ nocase ascii wide

condition:

$re

}

Figure 15: Study IV: the original rule

Using this rule, Yara will warn us about what is
causing scanning speed problems. The first one is
caused by the star symbol, which indicates that we
want to match alphanumeric characters and _ zero or
more times. In this specific warning, Yara provides us
with advice on solving their issue, as seen in Figure 17.
We need to limit the range to small values, that de-
scribe the strings we need to match. Because the part
before the dot is notmandatory, we can skip it entirely.

The problemof toomanymatches can be triggered
depending on the input, and it is also connected to the
first warning. Because the beginning of the string is
not set to a fixed position, Yara searches for every vari-
ant, such as .exe, a.exe, aaa.exe, and so on. In these
cases, Yara returns an incorrect number of matches in
the second case. We want to avoid both warnings.

rule test_08

{

strings:

$re = ".exe" nocase ascii wide

condition:

$re

}

Figure 16: Study IV: the updated rule

$ time ./yara 07.yar -r dataset/

warning: rule "test_07" in 07.yar(3):

$re contains .*, .+ or .{x,} consider using

.{,N}, .{1,N} or {x,N} with a reasonable value

for N

real 1m2.497s

user 13m41 .575s

sys 1m9.662s

$ time ./yara 08.yar -r dataset/

real 0m37 .388s

user 0m59 .060s

sys 0m19 .649s

Figure 17: Study IV: comparison

Yara can try to match more than you want or need
if you don’t setup string length ranges that you want to
match or if strings don’t have a fixed starting position.
The original version of the rule might look more gen-
eral, but it will most likely cause trouble in the future.
It is better to keep it more specific, as shown on the
updated rule, which is about 40% faster (Figure 16).

Dominika Regéciová, Yara Studies: A Deep Dive into Scanning Performance 5

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 8, NO. 1, APR. 2023

8 Study V: Secret Agent 6, IPv6

How can you effectively search for IPv6 addresses?
When an analyst asks this kind of question, the solu-
tion often lies in a detail. What kind of addresses do
we need to match? The rule’s first version matches
all kinds of IPv6 addresses and more. This is time-
consuming but also generates a lot of false positives.

rule test_09

{

strings:

$ipv6 = /([a-f0 -9:]+:+) +[a-f0 -9]+/

fullword nocase ascii

condition:

$ipv6

}

Figure 18: Study V: the original rule

After discussion, we figured out we must only
match global unicast addresses starting with the pre-
fix 2001. This is good news for Yara because it can use
this prefix for faster scanning. We also limit the range
of hexadecimal symbols to match the strings.

rule test_10

{

strings:

$ipv6 = /2001:([a-f0 -9]{0 ,4}:) {1,6}[a-f0

-9]{0 ,4}/ fullword nocase ascii

condition:

$ipv6

}

Figure 19: Study V: the updated rule

$ time ./yara 09.yar -r dataset/

warning: rule "test_09" in 09.yar(3):

string "$ipv6" may slow down scanning

real 1m20 .158s

user 2m26 .389s

sys 0m24 .285s

$ time ./yara 10.yar -r dataset/

real 0m39 .236s

user 1m0.937s

sys 0m21 .562s

Figure 20: Study V: comparison

The difference between the two versions of this
rule is incredible. The second variant was about 50%
faster and had zero matches, while the first version of
the rule had 20,625 matches, all false positives. Both
aspects caused issues, and solving them at the same
time was a win-win situation.

9 Conclusion

Yara is an amazing tool but not always user-friendly.
When you need to create detection rules quickly, there
is often not enough time to think about potential per-
formance issues. As the selected studies show, even
simple tasks, such asmatching strings in a certain po-
sition, could be written differently with vastly different
resulting performances.

This paper describes five studies to provide a form
of guidelines that have the potential to improve the
scanning speed with minimal effort so analysts can
focus on their work and not worry about how to over-
come barriers in the form of Yara syntax construct is-
sues.

Acknowledgment: The author would like to thank
JakubKřoustek, MarekMilkovič, and Threat Labs team
at Gen for their guidance and support.

Author details

Dominika Regéciová

Gen
Brno, Czech Republic
Dominika.Regeciova@gendigital.com
ORCID iD: 0000-0001-8729-6999

References

[1] “The Official Yara Documentation.” https://yara.
readthedocs.io/en/v4.2.3/.

[2] “Awesome YARA.” https://github.com/

InQuest/awesome-yara.

[3] D. Regéciová, “Yara: Down the Rabbit Hole Without
Slowing Down,” The Journal on Cybercrime & Digital
Investigations, vol. 7, 2022.

[4] D. Regéciová, D. Kolář, and M. Milkovič, “Pattern
Matching in Yara: Improved Aho-Corasick Algo-
rithm,” IEEE Access, vol. 9, pp. 62857–62866, 2021.

[5] “Yara GitHub.” https://virustotal.github.io/

yara/.

[6] E. de O. Andrade, “MC-dataset-binary and MC-
dataset-multiclass.” https://figshare.com/

authors/Eduardo_de_O_Andrade/4923649.

[7] B. Bosansky, D. Kouba, O. Manhal, T. Sick, V. Lisy,
J. Kroustek, and P. Somol, “Avast-CTU Public CAPE
Dataset,” 2022.

[8] “Regex Performance.” https://github.com/

rust-leipzig/regex-performance.

[9] “Yara Performance Guidelines.” https://github.
com/Neo23x0/Yara-Performance-Guidelines.

6 Dominika Regéciová, Yara Studies: A Deep Dive into Scanning Performance

mailto:Dominika.Regeciova@gendigital.com
https://yara.readthedocs.io/en/v4.2.3/
https://yara.readthedocs.io/en/v4.2.3/
https://github.com/InQuest/awesome-yara
https://github.com/InQuest/awesome-yara
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://figshare.com/authors/Eduardo_de_O_Andrade/4923649
https://figshare.com/authors/Eduardo_de_O_Andrade/4923649
https://github.com/rust-leipzig/regex-performance
https://github.com/rust-leipzig/regex-performance
https://github.com/Neo23x0/Yara-Performance-Guidelines
https://github.com/Neo23x0/Yara-Performance-Guidelines

	Introduction
	Introduction to Yara
	Atoms Selection From Strings
	Aho-Corasick Automaton
	Bytecode engine
	Condition Evaluation

	Experiments
	Study I: Strings vs. Condition
	Study II: Potentially There
	Study III: Problematic Alternations
	Study IV: Too General
	Study V: Secret Agent 6, IPv6
	Conclusion

