
THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 7, NO. 1, APR. 2022

Yara: Down the Rabbit Hole
Without Slowing Down

Dominika Regéciová
Avast Software

This paper was presented at Botconf 2022, Nantes, 26-29 April 2022, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
cb It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract

Terry and John are two malware analysts
working for an unnamed antivirus company.
Terry has worked there for many years, and he
is helping John, who started recently, to learn
more about their work. John is starting to
use Yara – an excellent tool for the description
and detection of malware families. With Terry,
they are analyzing potentially malicious sam-
ples, and they are creating so-called Yara rules.
This is not a simple task to do – Yara may be
easy to use, but it is difficult to master. How
to write the best rule possible? The rule that is
good in detection, precise, but also fast? Luck-
ily, they have help - a researcher Caitlin, who is
not scared to get really deep into Yara. Today,
all three of them will go deeper into Yara than
ever before – the journey to the rabbit hole can
begin.

Keywords: pattern matching, performance, regular
expressions, Yara.

1 Introduction

This presentation aims to provide practical informa-
tion for analysts who create Yara rules and explain this
topic to wider audiences without previous experiences
with Yara.

Firstly, the basics will be explained – what is Yara?
What can it do, and how is it being used? Why should
we care about details, how Yara works internally? This
section will provide enough information for those who
are not yet familiar with Yara.

In the second part, we will explain how Yara works.
Wewill showexamples, andwe also point out the prob-
lematic places that are doing the analyst’s job harder
than it could be.

At Avast, we are working on these areas, and we
are trying to fix them. Some changeswill be presented.
Last but not least, the performance will be discussed.
How to optimize rules? What to do if errors orwarnings
pop out?

To avoid getting too technical and theoretical, we
will work with three imaginary colleagues - Terry1,
John2, and Caitlin3. They will help us understand real-
world applications of the provided information and
represent a different perspective based on profession
and level of experience.

Note that this presentation is slightly inspired by a
light talk given at Botconf 2019 with the same name.

2 Why Yara and Why We Should
Want to Know More?

Yara was created by Victor Manuel Alvarez from the
company VirusTotal, which Google Inc. acquired in
September 2012. The primary motivation for Yara was
to create a tool for the classification and identification
of malware and make the whole process of working
with malicious files more effective. Before that, these
processes relied more on the individual knowledge of
analysts, which was highly unproductive and informa-
tion was almost impossible to share.

With Yara, companies can create a set of rules that
can be later used for threats detections. Each rule
identifies key aspects of some malicious software or

1Terry Pratchett (1948-2015)
2John Irving (1942)
3Caitlin Doughty (1984)

Dominika Regéciová, Yara: Down the Rabbit Hole Without Slowing Down 17

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 7, NO. 1, APR. 2022

behavior. Yara can scan files searching for statical in-
formation as strings or use reports from sandboxes
and emulators to found suspicious behavioral infor-
mation.

Today, many companies that are not exclusively an-
tivirus companies, namely Avast, Kaspersky Lab, and
ESET, use Yara every day for their cybersecurity. The
list of these companies can be found on the project’s
Github page (see [1]). We can expect the popularity of
this tool will only grow, mainly because of the active
community that is working toward improving Yara and
bringing important information to the public.

At one of the companies, there is currently an ongo-
ingmeeting. Malware analysts Terry and John decided
to meet with a researcher from their team, Caitlin, to
discuss how Yara works in more details.

John, still learning about all tools necessary for his
job, hesitates. Why do they need to know so much
about Yara? He saw some rules already, he even wrote
a few of them, so what is the fuzz about it?

Caitlin, on the other hand, has a different point of
view. She has been working with the Yara project di-
rectly for some time. She knows the algorithms used
in the code, their strengths, and their limitations. But
she needs to understand which information is actually
helpful to the analysts and create more confusion.

To bring these two perspectives together, Terry will
be moderating the meeting. He has been working as
an analyst for a few years now. He can write pretty
good rules, but there are cases where he is not sure
how Yara works under the hood. There is not much
time to search how Yara evaluates different versions
of rules in detail in his job. The fact that Yara is still
evolving and things are changing does not help either.
Luckily, this is a part of the job for Caitlin. She is provid-
ing them with more detailed information and helping
them with more complicated rules.

3 How Does Yara Work?

rule rule_number_one

{

meta:

author = "John"

strings:

$re = /abcd[x-z]/

condition:

$re

}

Figure 1: Our first Yara rule

How does Yara work then? To start, let us have a
simple rule as shown in Figure 1.

Every rule has three parts - meta information,
strings, and condition. Only condition part is manda-
tory, and it contains Boolean expressions. If the con-
dition as a whole is True, the rule is matching the file.

The meta section usually includes the name of the au-
thor and other information about the malware the rule
describes. Strings can be text strings, regular expres-
sions, or hexadecimal strings.

In rule named rule_number_one we are searching
one of three strings abcdx, abcdy or abcdz. If any of
these three will be found in a file, Yara will match it.

But before the result is known, four steps have to
be completed: atoms selection from strings, creation
of Aho-Corasick automaton, bytecode engine run, and
evaluation of conditions. Let us talk about them a lit-
tle bit, so we understand later how each step can be
optimized and used in practice by our analysts.

3.1 Atoms Selection From Strings

From all strings from all rules, so-called atoms are se-
lected. The atoms are substrings with lengths from
zero to four bytes. Yara has several heuristics on
selecting the most unique and thus most effective
atoms. In our case, from regular expression /abcd[x-
z]/ Yara will select the part abcd.

Caitlin explains that Yara has limits when select-
ing atoms and when strings are too general, such as
/\w*/, even zero-length atoms can be chosen. This will
lead to a warning about slowing down scanning. We
want to avoid that when possible because rules with
errors or warnings can not be used in some systems
like VirusTotal Hunting4.

3.2 Aho-Corasick Automaton

After all atoms are selected, the prefix tree, called Aho-
Corasick automaton, is created.

Figure 2: An example of the Aho-Corasick automaton
for atom abcd

Aho-Corasick automaton is an effective way to
match every occurrence of multiple strings simultane-
ously, even when the matches are interleaving. Start-
ing in the root state, the automaton reads one symbol
from the input a time and changes states accordingly.
If the final state is visited, the atom was found in the
input.

When there is no transition based on a combina-
tion of the current state and input symbol, the failure
function is used. The default action is to go to the root
state and try again. However, if the prefix of the other
string was partially matched, we can try to go there in-
stead. All failure functions are pointing to the root in
our cases because there are all different characters,
but we can choose a different case.

Let us say we are looking for words she and his in
text shis. We starting matching sh in keyword she, but

4https://www.virustotal.com/gui/hunting-overview

18 Dominika Regéciová, Yara: Down the Rabbit Hole Without Slowing Down

https://www.virustotal.com/gui/hunting-overview

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 7, NO. 1, APR. 2022

now, we need e, but we have i instead. We could go to
the root not again, or try to match his instead because
we know we already read h. And yes, we can find his in
the rest of the text.

After the automaton is created, the first matching
process is run. This will find all places inside of the file
where actual matches could be found.

3.3 Bytecode engine

To found all actual matches, a bytecode engine is run
with the list of potential matches. This phase can take
a long time, so it is important the list of the potential
matches is the most accurate as possible. If a match
is found, Yara also reports the position in the input. In
an example in Figure 3, there is a match on position
0x0.

0x0: abcdx => match

0x7: abcdf => not a match

Figure 3: rule_number_one found one match in the in-
put

3.4 Condition Evaluation

The last step is the condition evaluation. The condi-
tion has to be True to match the file. In our case, we
only need one string present at least one time, but the
condition can be more complex, as we will show later.

In our case, we found the match on position 0x0,
so the rule matched the file.

4 Our Changes in Yara

This part of the presentation is about some changes
and improvements we have made in Avast. The core
principles and theory behind them were described in
paperPatternMatching in Yara: ImprovedAho-Corasick
Algorithm [2]. Here we will present mainly the practi-
cal aspects of these changes and their impact on Yara.
The code is also available online on the Github reposi-
tory5.

These changes were motivated by problems that
Terry and John, and other analysts are facing. Write
a good Yara rule is a challenging task itself, but often
cryptical errors and warnings are popping out from the
tool itself. This rule is slowing down scanning; there are
too many matches, and so on.

As Caitlin and other researchers found out, one
source of these problems is how regular expressions
in Yara are being handled. Yara is accepting a pretty ex-
tensive set of regular expressions based on PCRE no-
tation. However, the inside of the code, regular expres-
sions are being ignored by the first two steps of the
scanning process (atom selection and matching pro-
cess with Aho-Corasick automaton), resulting in over-

loading bytecode engine. Thus the warnings and er-
rors, because the Yara cannot handle the use of regular
expressions effectively.

At Avast (and in the unnamed company where our
team works), however, we want to include at least a
subclass of the regular expressions into this process
to search for them more efficiently and effectively.

4.1 Bitcoin addresses and more

To demonstrate the changes, let us look at an example
in which John wants to look up the string that could
be Bitcoin addresses. Based on the samples he works
on, he is considering the P2PKH and P2SH types, omit-
ting the Bech32 type (see [3]). The rule detecting such
addresses could look like shown in Figure 4.

rule rule_number_two

{

strings:

$re = /[13][a-km -zA-HJ -NP-Z1 -9]{25 ,34}/

fullword ascii wide

condition:

$re

}

Figure 4: The Yara rule for the detection of Bitcoin ad-
dresses

When trying this example, he gets a warning about
slowing down scanning. Why? Because in the up-
stream version, the atom of the length of zero is being
selected. Thismeans that all bytes in the inputmust be
checked by the bytecode engine if the match is there
or not. This is an extremely time-consuming task, so
the warning is correctly generated.

In our version, the atoms are not only substrings,
they are a subclass of regular expressions. For that
reason, we canworkwith atoms such as 1[a-km-zA-HJ-
NP-Z1-9][a-km-zA-HJ-NP-Z1-9][a-km-zA-HJ-NP-Z1-9]. In
this specific case of the Bitcoin addresses, our version
can be almost ten times faster than the upstream ver-
sion. This change will lead to a much faster scanning
process and enables Terry and John to use a broader
spectrum of regular expressions without errors and
warnings.

4.2 Nocase

Text strings in Yara are case-sensitive by default. How-
ever, we can turn a string into case-insensitivemode by
appending the modifier nocase at the end of the string
definition, in the same line [4].

However, this modifier can slow down Yara, mainly
in the upstream version. For example, for string
cmd.exe, the atom cmd. will be selected. If the nocase
modifier is used, Yara will create eight atoms present-
ing all variants of lower and uppercases. This could
not look as much, but when this modifier is used ex-
tensively, it can rapidly increase the number of atoms.

5https://github.com/regeciovad/yara/tree/classesv2

Dominika Regéciová, Yara: Down the Rabbit Hole Without Slowing Down 19

https://github.com/regeciovad/yara/tree/classesv2

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 7, NO. 1, APR. 2022

More atoms mean more potential matches, and that
will lead to overall slowing scanning.

In Avast, we are evaluating the nocase differently.
Instead of creatingmore atoms, we generate with con-
sistent of classes such as /[Cc][Mm][Dd]./. Again, this
change can speed up the scanning process. More
specifically, we were able to speed the scanning by
about 27% in specific cases.

5 Yara Performance

Performance is important when we have many new
samples every day that have to be scanned for poten-
tial threats. Yara, in general, can be very fast, but there
are limitations. Luckily, we can improve Yara’s perfor-
mance if we keep some basic principles inmind during
writing rules. These section are based on research of
Inquest [5], [6], Florian Roth [7], and the author of this
proposal.

5.1 Atoms Selection From Strings

As we explained before, the selection of atoms can
have a significant impact on the overall performance.
The goal is not to force to create strings just for
the sake of the atoms but to be more mindful about
mostly regular expressions and hexadecimal strings.
Are those strings really what we need to match? Are
they bringing the real meaning to the detection pro-
cess of the malware, or are they just matching some
random stuff?

/abc .{1 ,20} def/ => abc

/(one|two)three/ => thre

{ 00 00 [1-4] 01 02 03 04 } => {01 02 03 04}

/a(c|d)/ => /(c|d)/

/\w.*\d/ => "" (0-length atom)

Figure 5: Examples of how Yara is choosing atoms
from strings

In Figure 5 we can see, Yara is trying to find the
unique atoms for a given string. However, too general
strings like /\w.*\d/ do not give Yara enough to work
with. Omit strings like this. They will not bring addi-
tional value to your rules, and they will slow down Yara
significantly.

5.2 Strings

Beyond the atoms, strings can additionally attribute to
the scanning speed, mainly in the verification phase.

Whenworkingwithmodifications as ascii, wide, no-
case, fullword, be careful and think twice about what
you need. In general, any additional information will
mean more steps that Yara has to do.

Ascii - 1 byte per character {42}

Wide - 2 bytes per characters {00 42}

$s1 = "cmd.exe" (ascii only)

$s2 = "cmd.exe" ascii (ascii only as $s1)

$s3 = "cmd.exe" wide (UTF -16 only)

$s4 = "cmd.exe" ascii wide (ascii and UTF -16)

Figure 6: Strings modifiers in Yara

If we need to use nocase option for case-
insensitive mode, we recommend to use a regular ex-
pression instead and locate the possible variants like
$re = /[Pp]assword/.

When working with regular expressions, be aware
that most of themwill impact the scanning speed neg-
atively. Avoid greedy quantifiers .* and .+ or even .*?.
Also, do not forget the upper bound (e.g. .{2,}). Think
howmany strings can bematched by a regular expres-
sion if you want to avoid toomanymatches or slowing
down scanning warnings.

// $re1 will find Tom , xTom , xxTom in "xxTom"

$re1 = /.{0 ,2} Tom/

// $re2 will find Tomxx in "Tomxx"

$re2 = /Tom .{0 ,2}/

Figure 7: How Yara evaluate infixed prefix and suffix
differently

Based on Figure 7, we can see that Yara evaluates
the infixed prefix and suffix differently. It is caused par-
tially by the Aho-Corasick automaton, which will report
two potential matches in case of $re1, but only on in
case of $re2. For that reason, it is better to use strings
that have the most likely fixed location of the prefix.

5.3 Too Many Matches

Before Yara version 4.1.0, toomanymatches was error
during scanning, where a string was found in input too
many times. This means that the scanning process
was stopped, and the results were invalid. From ver-
sion 4.1.0, it is no longer an error but rather a warning,
the scanning is finished, but the results could still be
invalid.

The problem can be triggered during the evalua-
tion of potential matches, where the number of verified
matches overcomes a specific value (currently set up
to 1,000,000).

These can be caused by a few reasons. Strings
could be too general, as a sequence of zeroes or com-
mon sequences in binaries. As we also showed be-
fore, if the string does not have a fixed beginning of the
match, Yara will try to find them all. For string /aaa/
with text aaaaaaaa (eight times a), Yara will find six
matches.The problem can grow even more when no
upper bound is used (such as /aaa*/).

There is no one simple solution for these cases.
Because the problem is triggered during the validation

20 Dominika Regéciová, Yara: Down the Rabbit Hole Without Slowing Down

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 7, NO. 1, APR. 2022

of potential matches, the changes of the conditions
will not solve the problem.

In some cases, the following steps can fix the prob-
lem:

• Check for the quantifiers .* and .+, .*?

• Check for quantifiers without upper bound such
as x{14,}

• Check for too large range (e. g. x{1,300000})

• Check for big jumps in the hexadecimal strings

• Check for wild-cards characters - can they be
specifiedmore preciously, or could be string split
into two, omitting the wild-cards character?

• Check for alternations: can it be split into two or
more strings?

• Try to add specification for wordsmatching (full-
word, \b, . . .)

5.4 Conditions

What about conditions, then? Can they improve the
matching speed? Yes, and no. They have some poten-
tial, but there are two problems. Matching of strings
comes first. Condition filesize < 100 and $expen-
sive_regexwill not help because Yara will match with a
regular expression first and then check the file’s size.

Also, if the statements are more or less equally ex-
pensive, the order does not really matter, as in the case
$string1 and $string2 and uint16(0) == 0x5A4D.

However, there are cases where the order of the
parts of the condition can make a difference. The first
of them is based on short-circuit evaluation. If we have
conditions like False and b, the b is not evaluated be-
cause a whole expression is False. The same logic ap-
plies to the True or b, where no matter what b is, the
expression is True. For that reason, it is a good idea to
write condition elements that are the most likely to be
"False" first.

// EXPENSIVE and CHEAP

math.entropy(0, filesize) > 7.0

and

uint16 (0) == 0xFFFF

// CHEAP and EXPENSIVE

uint16 (0) == 0xFFFF

and

math.entropy(0, filesize) > 7.0

Figure 8: Examples of conditions where the order mat-
ters

From version 3.10, the integer range loops were
also optimized:

for all i in (0..100): (false)

for any i in (0..100): (true)

Figure 9: For loops in Yara are also optimized.

Both of these loops will stop iterating after the first
time through.

6 Conclusion

In this presentation, we discussed the unique tool for
malware analysis, Yara. We presented how does it
work, how does it perform, and how we can get the
best out of its potential. We also presented changes
that are also available online.

The future is difficult to predict, but Yara is most
likely to be used in the following years more and more
due to still-growing numbers of malware. For that rea-
son, a deep understanding of Yara could be a key ad-
vantage in moving forward.

Acknowledgment: The author would like to thank
Jakub Křoustek, Marek Milkovič and Threat Intelli-
gence team in Avast Software for their guidance and
support.

Author details

Dominika Regéciová

Avast Software
Brno, Czech Republic
dominika.regeciova@avast.cz
ORCID iD: 0000-0001-8729-6999

References

[1] “Yara github.” https://virustotal.github.io/

yara/.

[2] D. Regéciová, D. s. Kolář, and M. Milkovič, “Pat-
tern matching in yara: Improved aho-corasick algo-
rithm,” IEEE Access, vol. 9, pp. 62857–62866, 2021.

[3] “Bitcoin wiki: Address.” https://en.bitcoin.it/
wiki/Address.

[4] “The official yara documentation.” https://yara.
readthedocs.io/en/v3.10.0/.

[5] “Short-circuiting boolean operators in yara.”
https://inquest.net/blog/2018/12/18/

yara-short-circuiting.

[6] “Stringless yara rules.” https://inquest.net/

blog/2018/09/30/yara-performance.

[7] “Yara performance guidelines.” https://github.
com/Neo23x0/Yara-Performance-Guidelines.

Dominika Regéciová, Yara: Down the Rabbit Hole Without Slowing Down 21

mailto:dominika.regeciova@avast.cz
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://en.bitcoin.it/wiki/Address
https://en.bitcoin.it/wiki/Address
https://yara.readthedocs.io/en/v3.10.0/
https://yara.readthedocs.io/en/v3.10.0/
https://inquest.net/blog/2018/12/18/yara-short-circuiting
https://inquest.net/blog/2018/12/18/yara-short-circuiting
https://inquest.net/blog/2018/09/30/yara-performance
https://inquest.net/blog/2018/09/30/yara-performance
https://github.com/Neo23x0/Yara-Performance-Guidelines
https://github.com/Neo23x0/Yara-Performance-Guidelines

	Introduction
	Why Yara and Why We Should Want to Know More?
	How Does Yara Work?
	Atoms Selection From Strings
	Aho-Corasick Automaton
	Bytecode engine
	Condition Evaluation

	Our Changes in Yara
	Bitcoin addresses and more
	Nocase

	Yara Performance
	Atoms Selection From Strings
	Strings
	Too Many Matches
	Conditions

	Conclusion

