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Abstract

In this paper, we present a newmethodology
to discover emerging malware where new mal-
ware candidates are continuously discovered
by our general anomaly detection, and the graph
learning system predicts the behavior and the
threat family using fuzzy similarity to support
further analysis by the security researchers, or
for the automatic enforcement and remedia-
tion. This methodology can be applied at large
scale to detect and analyze emerging malware
while providing rich contextual information.

Keywords: fuzzy hash, ssdeep, similarity graph, al-
gorithms.

1 Introduction

Fuzzy hashing is widely used by malware analysts to
analyze emergingmalware [1, 2, 3, 4, 5, 6, 7, 8]. Canma-
chine intelligence perform this analysis automatically
and at scale?

VirusTotal and other threat intelligence providers
give excellent visibility into evolving threats over the
years, which we all appreciate. However, one concern
remains: what if there is no "patient 0" who can notify
VirusTotal of a new threat? How many attacks would
wemiss as a result? Alibaba Cloud has a dominant po-
sition in the Asia Pacific market for the cloud services,
and we detect and block a large number of regional
cyberattacks and discover newmalware samples on a
daily basis. Many of these attacks and samples are ei-
ther not reported at all or are reported several days late

on VirusTotal. Meanwhile, advanced malware tech-
niques like polymorphic can bypass the cryptographic
hashing signature-based threat intelligence lookups.
Thus, the market has asked us a question: can we de-
tect new malware before VirusTotal can see them?

In this paper, we present our approach to auto-
matically detect and predict newly emerging malware
within the cloud provider infrastructure using fuzzy
hashing, a graph database, and graph algorithms, be-
fore VirusTotal or any other 3rd party detection engine
can report it to the community.

Fuzzy hashing, combined with the similarity func-
tion, enables the quantification of the similarity be-
tween two malware samples. For example, ssdeep
algorithm, the de facto standard among context-
triggered piece-wise hashing algorithms (CTPH), uses
a modified Levenshtein edit distance to describe the
malware sample content similarity. Using ssdeep and
the edit distance, we constructed a large-scale mal-
ware similarity graph and applied sub-graph pattern
discovery and clustering graph algorithms. Connect-
ing a pair of graph nodes corresponding to malware
samples with a high edit distance similarity, we auto-
mated the emerging malware discovery. Not only we
built a static graph off our collection of malware sam-
ples and our ssdeep repository, we also constructed
a pipeline that is continuously updating our similarity
graph with newly observed samples to detect emerg-
ing malware and predict their family and behavior.

We contribute by introducing a general graph-
based framework of the malware binary similarity
analysis, as well as graph algorithms-based auto-
mated discovery. This framework proved to be use-
ful for modeling malware sample similarity in graphs
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without being dependent on any specific fuzzy hash-
ing algorithm. We performed engineering optimiza-
tions of the pairwise ssdeep computation to dramat-
ically reduce the cloud computing costs which effec-
tively enabled us to accomplish our goal to have a
production-grade pipeline. These optimizations relied
on the sparsity of the graph resulted from our focus
only on medium to high similarity scoring.

The paper is organized as follows. First, we review
the fuzzy hashing algorithms with an emphasis on ss-
deep. Then we construct the malware similarity graph
and apply graph algorithms for emerging sample dis-
covery. We also elaborate on the engineering optimiza-
tion to ensure that our large-scale graph and its regu-
lar updates with new samples are implemented cost-
effectively. After that, we provide a few case studies
that include polymorphic malware, ransomware, cryp-
tocurrency miners and other malware families. Finally,
we conclude the paper with ideas and research direc-
tions to extend our work in the future.

2 Fuzzy Hashing and ssdeep

2.1 Introduction to Fuzzy Hashing

Ten years ago, traditional static analysis using crypto-
graphic MD5 and SHA256 hashes was “the most com-
monly used technique in malware research". However,
asmoremalwarewriters have used polymorphismand
reused the source code, this traditional approach has
reached its limits. Hence, there has been a recent trend
towards fuzzy hashing, or more specifically the adop-
tion of Similarity Preserving Hashes (SPD) as in e.g.
[1, 2, 3, 4, 5, 6, 7, 8]. Although these techniques differ
in their effectiveness and computational costs, they
share two key steps for SPD: feature selection and di-
gest generation (See Fig.1). Feature selection extracts
features such as a bag of n-grams or a rolling hash
over sliding windows, while digest generation creates
amore compact presentation for the selected features
[6].

Figure 1: Fuzzy hash calculation

Popular Fuzzy Hashes. Among current fuzzy hash-
ing methods, ssdeep [9] has gained enormous pop-
ularity in malware detection and analysis, especially
since there is an open source implementation avail-
able. ssdeep excels at detecting minor changes, but

may be vulnerable when content is swapped or frag-
mented. Sdhash [10] uses fixed length blocks (64-
byte) with high entropy, which are then converted to
a Bloom filter bitmap. Sdhash is good at handling con-
tainment and cross-sharing but suffers fromhigh com-
putational complexity. TLSH [11] uses a bag of triplets
mapped into a 32-byte container and is more robust to
random changes and adversarial manipulations than
ssdeep or sdhash. However, TLSH focuses on the
fragmentation and resemblance detection, and does
not perform well for the containment detection and is
computation-heavy. MvHash [12] calculates amajority
vote for each input byte within a corresponding neigh-
borhood, then transforms the byte sequences using
run length encoding (RLE) before finally computing a
rolling hash over a 7-byte sliding window, where the fi-
nal digest is a sequence of Bloom filters. Although this
method is generally faster than sdhash, it is possible
for an attacker to manipulate it to cause the similarity
score to approach zero even when the objects are very
similar[13]. LZJD [14] is more accurate, yet expensive
with respect to the storage space, requiring roughly 50
times more space when compared to ssdeep.

2.2 ssdeep Digest Generation

ssdeep uses context triggered piecewise hashing
(CTPH) and a rolling hash algorithm to determinewhen
blocks start and stop [9]. The figure below illustrates
how to generate an ssdeep hash: first, the binary is
split into the sequence of chunks based on the trigger
points (instead of fixed-sized blocks), then each chunk
is hashed into smaller number of bits and placed se-
quentially into small containers. ssdeep can match
inputs that have homologies, where strings have se-
quences of identical bytes in the same order, although
bytes in between these sequences may be different in
both the content and length.

Figure 2: ssdeep calculation

A literal ssdeep hash consists of a block size and
two sets of base-64 hashes separated by a colon, as
shown in Fig.3 where we present examples of ssdeep
hashes for Phoenix miner variants.
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Figure 3: Example of Phoenix miner’s[15] ssdeep fuzzy hash [16]

3 The Similarity Graph

3.1 Graph Construction

At Alibaba Cloud, we collect MD5, SHA and ssdeep
hashes of anomalous binary files. Over time, we have
built a library of more than one hundredmillion ssdeep
hashes collected from cloud instances that had secu-
rity agent functionality enabled. To build the similarity
graph, we used Levenshtein edit distance [17] as the
similarity metric for pairs of ssdeep hashes within our
hash library.

Mathematically, the Levenshtein distance lev(a, b)
between two strings a and b (of length |a| and |b| re-
spectively) is defined in Fig.4, where the tail of a string
x is a string of all but the first character of x, and x[n]
is the nth character of the string x.

Figure 4: Levenshtein edit distance.

In Fig.5 and Fig.6 we present examples of ssdeep
hashes and their similarity scores for several variants
of an actual crypto-miner and XOR.DDoS trojan mal-
ware. It is important to note that we have optimized
the edit distance calculation and modified Wu’s algo-
rithm to speed up the entire distance calculation pro-
cess (See more details in Section 4.3).

In the next step, the fuzzy hash similarity graph
is constructed from all pairwise similarities using the
Levenshtein edit distance. A graph G is typically de-
fined as a tupleG = (V,E)where V is a set of vertices
(also called nodes or points) and E = {{x, y}|x, y ⊂
V, x ̸= y and lev(x, y) > ϵ} is a set of edges (also
called links or lines), which are unordered pairs of ver-
tices (undirected graph). We add an edge between
two vertices (ssdeep hashes) if their pairwise ssdeep
similarity is higher than a threshold ϵ. We then en-
rich this graph nodes with attributes such as MD5,
SHA1/SHA256 and labels with tags from3rd party ven-
dors such as VirusTotal and Avira.

It is worth noting that in this similarity graph frame-
work ssdeep algorithm can be replaced by imphash
[18], Lempel-Ziv Jaccard Distance (LZJD) [14] or any
other fuzzy or forensic similarity hash, and most algo-
rithms in our framework will remain operational.

Figure 5: ssdeep and edit distance for XOR.DDoS.[16]

Figure 6: ssdeep and edit distance for miners.[16]

3.2 Graph as a Tool

With rich contextual information at the node and edge
levels, graphs are an excellent tool to model and un-
derstand relational data. Moreover, there exists now a
wide range of well understood algorithms, which help
in uncovering previously unknown insights from data
which has been modeled in a Graph.

Graphs support multiple traversal operations, in
particular second and high order for graph traversal,
and allow for modeling of information propagation.
Furthermore there exists pattern-based matching al-
gorithms which also allow for convenient and efficient
querying of large graphs. As a central tool of discrete
mathematics and machine learning, graphs thus of-
fer a flexible and general basis for both classical, as
well as modern machine learning based approaches,
which allow one to learn implicit structure from the un-
derlying data. For interesting and worthwhile "success
stories" one may for instance consider PageRank[19],
Graph Neural Networks (as for instance used in [20]),
label propagation [21] or graph embedding based ap-
proaches such as e.g. node2vec [22].

With the advent of huge volumes of graph data
collected e.g. in social networks or security systems
such as ours, graph databases [23] and graph com-
puting platform [24] have been developed to allow
for storing large scale multi-facet security informa-
tion, efficient querying, as well as the production de-
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ployment of graph basedmachine learning algorithms
[25, 26, 27, 22].

A key advantage of graph-based modeling is that
individual data points (vertices) may naturally be con-
sidered together with their context defined via their k-
hop neighborhoods (that is all neighborswithin k steps
along an edge). In Fig.7 we illustrate how a proper
graph model may provide such context: An Anomaly
Detection system reports the binary "X" (blue nodes)
as a suspicious, and a graph-based learning system

suggests that this binary has a high similarity with "Y"
(red nodes). If we know somehow (through e.g. exter-
nal confirmation by another system) that "Y" is mali-
cious, then automatically the risk of maliciousness of
"X" will increase. This situation could then be the start-
ing point for applying a machine learning algorithm on
this graph, such as e.g. label propagation [21], in order
to obtain predicted maliciousness labels for all previ-
ously unlabelled nodes.

Figure 7: Example of a ssdeep similarity sub-graph [16]

Instead of focusing only on traversing along edges
in a graph, one may also focus on graph patterns, that
is sub-graphs of certain types. Different sub-graph
patterns and topologies can be learned and extracted
from e.g. our similarity graph, where we present some
examples in Fig.8. In our experience, graph patterns
have been a powerful tool, helping us to map new find-
ings to one or a group of already known activities.

Figure 8: Example of sub-graph patterns

Graph Clustering. Based on the similarity graph,
we can apply algorithms such as graph pattern find-
ing, graph-based clustering and community detection

to automatically learn and extract patterns in an unsu-
pervised way [28, 29, 30, 31]. Label Propagation Algo-
rithm [21] can be used to predict labels for clusters or
patterns. Wewill present an example for this particular
application in the next section.

4 Production Deployment and Opti-
mization

We will now describe how our similarity graph-based
detection system for emerging malware has been de-
ployed to production and provide more details on the
key challenges we overcame while scaling up our
pipeline.

In our system we have implemented the following
steps:

1. Collection of ssdeep hashes: For any newly ob-
served candidate binary flagged by our existing
anomaly detection system, we compute its ss-
deep hash and add it to our existing library of
ssdeep hashes maintained in our internal data
warehouse system.

2. Computation of pairwise similarities between ss-
deep hashes and the construction of the ssdeep
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similarity graph G.

3. Cluster the graph G and apply the Label Propa-
gation Algorithm in order to predict labels for as
of yet unlabeled

In the remainder of this subsection we will share
more engineering details and briefly describe the per-
formance optimizations we accomplished.

4.1 Choice of ssdeep

Research results indicate that LZJD is amore effective
fuzzy hash algorithm than ssdeep, with a better ability
to match any related file fragments, while ssdeep is
generally considered more practical, having been ap-
plied previously in a number of threat intelligence sys-
tems [9, 32].

One LZJD hash contains 1024 4-bytes integer min-
imal hashes, which would amount to a storage cost of
4096 bytes per hash. Meanwhile, the average length of
hundreds ofmillions ssdeep hashes is only 75.5 bytes.
Hence, when compared to ssdeep, LZJDwould require
more than 50 times the storage space. At our scale
of hundreds of millions of binaries in the library, with
hundreds of thousands of new binaries added every
day, ssdeep was the best choice. This decision sig-
nificantly reduced the amount of CPU and storage re-
sources needed to run our pipeline in production.

4.2 Optimizing ssdeep

There have been many efforts to optimize ssdeep for
large scale deployments [32]. Given our scalability
requirements, optimal implementation of the ssdeep
hash computation has been one of the critical pri-
orities of our project. First, we opted to use the C-
language implementation from libfuzzy instead of a
previously used Java-based implementation. This has
enabled us to reduce the overall runtime for the en-
tire ssdeep computation process by about 83% and en-
abled us to use 91% fewer computing resources in our
internal big data system.

We run our ssdeep computation in a map-reduce
framework on top of our internal data warehouse. To
fully utilize parallelism we split the ssdeep computa-
tion across the map and reduce operations. This also
allowed us to efficiently implement a pre- and post-
filtering of irrelevant hashes in the map and reduce
stages, as well as clean up redundant characters.

Further optimizations include cleaning up redun-
dant characters, pre-filtering and early stopping with a
block size ratio filter and a 7-gram block heap. Given
the fact that we are mostly interested in finding high
similarity score only (to increase the sparsity of the
graph), early stopping helps with reducing the number
of pairs for which an ssdeep similarity is to be com-
puted.

Beside leveraging pre-filtered block size range and
7-gramblock heap, we also optimized the edit distance
algorithm to reduce the running time from O(N2)
(naive approach) to linear time using bit-wise Manber
and Wu algorithm [1], which has been used in Unix diff.
We went further by mapping from the original edit dis-
tance to a bit-string Longest Common Sub-sequence
problem for additional speed up and made significant
improvement of the running time again [33].

In our benchmark, these optimizations had a cumu-
lative improvement of being 5.5x faster and 10x less
computationally intensive, when compared with our
initial naive implementation.

4.3 Reducing the Search Space

With about 100 million ssdeep hashes in our sample
database, there are 10 quadrillion pairs to be com-
pared, which is practically impossible to calculate at
a reasonable cost, or regularly. Luckily, with our in-
house General purposed Anomaly Detection (GAD) en-
gine designed to capture any type of anomalous activ-
ities to discover potential IoCs (indicators of compro-
mise), wewere able to successfully reduce the number
of pairwise comparisons to a manageable level.

4.4 Fast Clustering

Due to the pre-filtering and early stopping of ssdeep
calculation, some pairwise similarities may not nec-
essarily exist. For example, sim(A,B) and sim(A,C)
may exist, while sim(B,C) does not exist or its simi-
larity is below the threshold. We therefore applied the
parallel single linkage clustering algorithm with fast-
ssdeep-clustering [34], which can deal with missing
links and greatly reduces the overall computation time
for the clustering step. We also leveraged our dis-
tributed cloud computing platform to perform a map
reduce-based label propagation algorithm (LPA) [21] to
find communities in a graph and cluster similar sam-
ples via multiple iterations. The source binary with
minimum distance is maintained via multiple itera-
tions and is used for cluster identification.

4.5 Additional Features andCluster Valida-
tion

Observed clusters tend to be noisy. We use several
additional features to validate and identify cohesive
clusters that are close to identified malicious sam-
ples. The features include the average edit distance
similarity and block size variance, filename and pro-
cess path similarity, counts of hidden files or hidden
paths, 1 "deleted" labels 2, the validation ratio based on
MD5, etc. "Good" clusters should have high average
similarity score, small block size variance, with many
hidden paths or files, relate to binaries found in the

1Files and folders can be hidden in Linux for many reasons. For example, users don’t accidentally modify the contents of these files,
hidden for privacy issues, etc. Hidden file or folder starts with a. dot(.), and are often applied for configuration files and logs.

2meaning a file was automatically deleted by local antivirus engines from the cloud instances

Thanh Nguyen et al, Detect emerging malware on cloud before VirusTotal can see it 11



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 7, NO. 1, APR. 2022

same folder, same filename or filename with similar
patterns3. Last but not least, the MD5 validation ratio
from the 3rd party vendors must be greater than 0.5.

5 Result validation

5.1 Dataset

We created a ssdeep similarity graph dataset for self-
evolving trojans and a fewothermalware families such
as Mirai, Agent Tesla, Heodo, etc. The graph has more
than two hundred thousands nodes and twenty mil-
lions of edges. The data is publicly available at the
Github repository in the Appendix.

5.2 Comparing results with 3rd party secu-
rity vendors

We analyze the detection result with many 3rd party
detection engines such as Avira and VirusTotal, the
online search engine. From 211,071 unique binaries
detected for self-evolving trojans, Avira can detect
153,925 binaries (72.9%). It is interesting that Virus-
Total detects only 1.2% of these binaries. Although
VirusTotal combines results from different vendors,
the shared data were potentially small snapshots and
subsets.

To ensure the quality of our work, we validate the
finding samples on the instances that receive gen-
eral security alerts from Alibaba cloud security center
such as weak password, cracking, intrusion, vulnera-
bility, etc. Indeed, we see a good overlap (75%) on the
instances that receive other alerts coming from the
cloud security center.

5.3 A Real Case Study

XOR.DDoS is one of the most widespread Linux mal-
ware families. Discovered in 2014, this malware has
changed many hats so far. The original purpose of
XOR.DDoS was to build a bot-based infrastructure and
to launch DDoS attacks. As time passed, XOR.DDoS
writers expanded its capabilities and started to target
Windowsmachines as well as Linux. Not long ago this
malware has adopted Docker service exploitation and
added detection evasion mechanism. We found the
variants of XOR.DDoS and calculated their ssdeep sim-
ilarities as shown below.

The original XOR.DDoS file is an ELF executable file
of the size of 247KB, MD5 d6a6dee6afa6879b729a0af

3cde7ff33, SHA1 47ed693d195558507e4258527f7d4d
4968d34f38, SHA256 dba757c20fbc1d81566ef2877a

9bfca9b3ddb84b9f04c0ca5ae668b7f40ea8c3, ssdeep
6144:3SDFOrnwRgUbMisI6sdkH+M6hWOcy5KOZW7U6NC

EqPdf/mqYG:2ZRgUY/fsJcO1KOiXfqPdeG, and notably
identified asmalicious by VirusTotal as shown in Fig.9.

Figure 9: XOR.DDoS with VirusTotal detection [35]

We then found a new suspicious binary with the fol-
lowing MD5 by our anomaly detection model: 6a749f
7b071e713affdcd759bc90707e. The similarity score
that can range from 0 (no common code) to 100 (bi-
naries are identical), was 97 when compared with the
known XOR.DDoS sample, which indicates a high sim-
ilarity. While VirusTotal had no data for this particular
MD5 at the time of our detection and classification, as
shown in Fig.10, our algorithm proceeded with labeling
this new binary as XOR.DDoS.

Figure 10: XOR.DDoS with no VirusTotal detection [36]

Because XOR.DDoS has been around for awhile, so
the pattern of its behaviour on the infected system is
well known. One of the most important patterns is the
algorithm XOR.DDoS uses to create its folder. It is typ-
ically located in /usr/bin/ and use ten random letters
for the name of its directory.

/usr/bin/gsqykkwuag

/usr/bin/tldpjssjet

/usr/bin/nrhfapuwjp

/usr/bin/kgpeplprzq

/usr/bin/uhflpmyerd

According to the logs from the machine, a new bi-
nary was discovered and we can see that the new bi-
nary follows the same pattern of creating a new direc-
tory. Thus, we can say that the newly detected binary
is XOR.DDoS variant and was discovered earlier than
3rd parties, including VirusTotal.

3We check if all filenames in the same cluster are either very similar or very dissimilar (high entropy) due to the distribution of random
characters in the filenames of similar patterns.
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5.4 Findings

To demonstrate the effectiveness of our approach,
we are sharing several clusters of self-evolving tro-
jans, miners on the cloud, ransomware, and others.
ssdeep and associated graph-based clustering works
well here due to the polymorphic nature of XOR DDoS
and due to the strong code reuse practice by malware
in general.

5.4.1 Self-evolving Trojan

XOR.DDoS is a self-evolving trojan. This malware fam-
ily can update the binary content to result in a new
SHA hash for each sample, as well as a new file
name every time, to make it challenging for threat in-
telligence feeds and the intelligence community as
a whole to detect and report all individual variants.
Very few of them are identified by VirusTotal, while
the majority of them are not. In fact, the com-
mercial engines provide a variety of different mal-
ware names, such as Trojan.Linux.GenericA.18093,
Linux.Agent.253320, Linux.Packed.227, Linux.Ag
ent.9!c, etc., which cause further confusion. The
dense clusters in Fig.11 shows the strong connections
of many self-evolving trojans through ssdeep similar-
ity.

Figure 11: The cluster of self-evolving trojans.

5.4.2 Miners on the Cloud

Bitcoin mining is the process of creating new bitcoins
by solving computationally hard math problems that
verify transactions and requires a significant amount
of computing power. Despite the fact thatmining itself
is legal, it requires toomuch computing power to be ef-
ficient for cloud customers. Thus, appearance of any
mining activity on cloud machine strongly indicates
malware infection or insider abuse. Many cloud com-
panies have warned that "malicious actors were ob-
served performing cryptocurrency mining within com-
promised cloud instances". Recently, Google reported

that 80% of the recent successful attacks on the cus-
tomer infrastructure in their cloud computing service
were used to perform cryptocurrency mining [37].

At Alibaba Cloud, we have observed and detected
many cloud instances related to coin mining by lever-
aging our file hash similarity graph. Fig.13 shows the
number of cloud instances and new binaries that are
related to coin mining in early November.

Figure 12: The miner cluster.

Figure 13: The miner on the cloud.

5.4.3 Ransomware

Ransomware is a malware designed to deny a user or
organization access to files on their computers by en-
crypting these files and demanding a payment for the
decryption key. Lately thismalware family becameone
of themost popularmalware. The success of thismal-
ware type encouraged malicious actors to adopt com-
mon practices of the malware protection and detec-
tion evasion, such as code modification. However, our
method allowed to detect new ransomware samples
by tracking the reused code. We see clusters where
the ransomware shares common libraries such as

/usr/lib/libk5crypto.so.3.1

/usr/local/bin/regtest
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{local env}/libaes.so

Figure 14: The ransomware cluster.

5.4.4 Mirai

While Mirai malware become one of the first "open
source" botnets as its code was published on GitHub
in 2016, there is no end-of-life planned any time soon.
Simple yet efficient malware design provides mali-
cious actors with great opportunities to modify the ex-
ploits it uses to get to the target every time a new re-
mote code execution or a new code injection vulner-
ability is found. Even now we frequently observe this
family in the wild.

Figure 15: Mirai cluster.

5.4.5 Agent Tesla

Agent Tesla is an advanced RAT which functions as a
keylogger and a password stealer. We observed that
Agent Tesla spyware has lower ssdeep similarity, for
which we can potentially apply different fuzzy hashing
functions such as LZJD for improving the binary pair-
wise similarity. Nevertheless, overall pipeline and the
graph framework still remains highly effective to de-
tect new AgentTesla variants.

Figure 16: Agent Tesla cluster.

6 Conclusion

At Security Innovation Labs of Alibaba Cloud, ssdeep
similarity graph is an important component in our
multi-data plane approach connecting binary content
similarity to other models using such data sources as
DNS, HTTP and the honeypot data [38].

In this paper, we present the method, the compo-
nents, and the way to orchestrate and optimize them
to discover new malware in the cloud automatically.
We believe that themachinery that we have built opens
up the possibility for larger scale and faster emerging
threat detection and analysis, and could improve the
cybersecurity collaboration between the East and the
West.
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Appendix 1

Sample dataset can be found at https://github.com/
phunterlau/ssdeep-graph-dataset
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