
THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

DeStroid – Fighting String
Encryption in Android Malware

Daniel Baier, Martin Lambertz
Fraunhofer FKIE

This paper was presented at Botconf 2019, Bordeaux, 3-6 December 2019, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
cb It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract

String encryption is a popular technique to
obfuscate the functionality, inner workings, and
goals of Android apps. Especially malicious
apps use this technique to thwart automatic
and manual analyses. Typically, a human ana-
lyst has to manually identify the decryption rou-
tines and afterwards use these routines to de-
crypt the strings contained in an app. This is
a time-consuming and tedious task. What is
more, it has to be carried out potentially for
every new malware version as the authors fre-
quently modify their techniques.

We analyzed the Android malware corpus
of Malpedia [1] and found that string encryp-
tion is used in more than half of the samples.
This demonstrates that string encryption is still
a prevailing obfuscation method nowadays.

In this paper we present DeStroid, an ap-
proach to fully automatically decrypt obfus-
cated strings from Android apps. We focus in
particular on current Androidmalware using ad-
vanced string encryption techniques and show
that DeStroid outperforms all publicly available
string deobfuscation approaches.

1 Introduction

Android is not only the predominant platform when is
comes to smartphones and tablets, it is also frequently
used on smartwatches, TVs, and other Internet of
Things (IoT) devices. Recently, Google announced that
“there are over 2.5 billion active Android devices” [2].
The popularity of the Android platform is also reflected
by the number of available apps: for the first quarter
of 2019 the number of apps in the Google Play Store
has been estimated at 2.6 million [3]. Unsurprisingly,

this popularity makes the Android platform an attrac-
tive target for attackers of all kinds.

These attackers commonly use malicious apps
(i.e. malware) for their purposes. Hence, the effec-
tive and efficient analysis of suspicious apps is vital
from a defenders point of view. Analysts are typically
interested in the functionalities and goals of a mal-
ware. One of the frequently used starting points dur-
ing an analysis are the strings used in an app. Hard-
coded domains names, method names used for reflec-
tion, strings used as method arguments, and so forth
can already reveal certain functionalities and intents of
the malware. If the strings are sufficiently unique, they
would to some extent even be suitable for a detection
or identification of a suspicious app.

To prevent this and to impede manual and au-
tomated analysis, malware authors employ a variety
of obfuscation techniques. A prevalent technique is
string encryption [4], which is also known as string ob-
fuscation, value encryption, or literal encryption. Here,
the strings an app uses are not present in plain text in
the Android package (APK), but only in an encrypted
form. To be able to use the encrypted strings, the
app contains a decryption routine which decrypts the
strings either right after the program start of just be-
fore a certain string is needed. This is referred to as
the deobfuscation part of the APK.

Fig. 1 emphasizes how string encryption com-
plicates the analysis of an app. Part 1a shows
a decompiled excerpt of the malware Back-
door.Android.OS.Triada 2016which uses string encryp-
tion. The bold parts show where string encryption is
used to obfuscate the keys used in the JSON object
constructed in the method. In contrast, Fig. 1b shows
the same excerpt but with the string encryption re-
solved. Obviously, the second example is much easier
to understand. Even without resolving the names of

14 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

the methods that fill the values, we can easily deduce
which information will be contained in the final JSON
object.

pub l ic s t a t i c JSONObject m64b(Context context) {
JSONObject jsonObject = new JSONObject () ;
t r y {

jsonObject . put (C0012m.m56a(C001b . f 1 7 I) , C0012m .m68c(context)) ;
jsonObject . put (C0012m.m56a(C001b . f18J) , C0012m .m71d(context)) ;
jsonObject . put (C0012m.m56a(C001b . f20L) , C0012m .m49a ()) ;
jsonObject . put (C0012m.m56a(C001b . f21M) , C0005f .m37b(context)) ;
jsonObject . put (C0012m.m56a(C001b . f19K) , T e x tU t i l s . isEmpty (C0012m .m61b ())

? " channn " : C0012m .m61b ())
;

jsonObject . put (C0012m.m56a(C001b . f22N) , C0012m .m76f (context)) ;
} catch (Except ion e) { }
re turn j sonObject ;

}

(a) with string encryption

pub l ic s t a t i c JSONObject m64b(Context context) {
JSONObject jsonObject = new JSONObject () ;
t r y {
jsonObject . put (" imei " , C0012m .m68c(context)) ;
jsonObject . put (" imsi " , C0012m .m71d(context)) ;
jsonObject . put (" uuid " , C0012m .m49a ()) ;
jsonObject . put (" net " , C0005f .m37b(context)) ;
jsonObject . put (" channel " , T e x tU t i l s . isEmpty (C0012m .m61b ())

? " channn " : C0012m .m61b ()) ;
jsonObject . put (" existPackages " , C0012m .m76f (context)) ;

} catch (Except ion e) { }
re turn j sonObject ;

}

(b) with string encryption resolved

Figure 1: Decompiled excerpt of a sample of the Back-
door.Android.OS.Triada 2016 malware.

To find out how often string encryption is used in
real-world malware, we manually analyzed 96 differ-
ent Android malware families. In 52% of the fam-
ilies we found string encryption being used. Since
the actual implementation of the string encryption dif-
fered between the samples, we established a taxon-
omyof string encryptionmethods used in Androidmal-
ware and classified the techniques we encountered
during our analysis. Moreover, we provide the labelled
dataset containing the APKs of the malware samples
we analyzed. The labelling includes the class of the
string encryption the sample uses, the expected num-
ber of deobfuscated strings, as well as the information
where to find the deobfuscation part in the decompiled
code. Hereby, we provide a ground truth regarding the
string encryption used in the malware samples we an-
alyzed. This ground truth is not only used in our evalu-
ation, but it can also be used by the scientific commu-
nity for future research and evaluations.

Furthermore, we present DeStroid, our approach
to fully automatically decrypt obfuscated strings from
Android apps. DeStroid is designed to decrypt strings
even from highly obfuscated state-of-the-art malware
samples which use reflection or hide their strings in
several locations within the app. Our approach com-
bines program slicing with code generation and dy-
namic execution.

In our evaluation, DeStroidwas able to deobfuscate
44 of the 79 samples (55%) of the samples completely,
i.e. it deobfuscated all of the expected string from the
samples correctly. 10 other samples were deobfus-
cated to a degree of ≥ 50% and < 100%. Finally, in
8 cases DeStroid was able to decrypt < 50% of the

strings. These decryption rates can be improved if ei-
ther a specific encrypted string of interest or the de-
cryption routine is provided. We compared the results
of DeStroid with all publicly available string deobfus-
cation approaches and found that our approach out-
performs all of them by far.

In all cases DeStroid took less than 3 minutes per
app to deobfuscate the strings in an app. This makes
it suitable for large-scale analyses of Android apps.

Both, the implementation of our approach and the
labelled dataset of Android malware samples will be
made publicly available [5, 1].

In summary, our paper makes the following contri-
butions:

• We provide a taxonomy of string encryption im-
plementations and their usage in current Android
malware families.

• We provide a labelled dataset of Android mal-
ware samples, including the APKs, the expected
deobfuscated strings, and where to find the de-
obfuscation part in the decompiled code.

• We propose DeStroid, an approach to fully auto-
matically deobfuscate encrypted strings from
Android apps, which outperforms all publicly
available deobfuscation approaches.

The remainder of the paper is structured as fol-
lows: In Section 2 we present a taxonomy of string en-
cryption techniques used in Android malware and the
classification of the sampleswe analyzedwith respect
to this taxonomy. Section 3 summarizes the related
work in the field of Android string decryption. Section 4
introduces the architecture and the concepts behind
DeStroid and its components. Next on, Section 5 re-
ports on the evaluation based on the generated ground
truth and discusses its results. Then, in Section 6 the
limitations of our approach and possible future works
are discussed. Finally, Section 7 concludes this paper.

2 A Taxonomy of String Encryption
Techniques

There are different possible ways to implement string
encryption. In this section, we provide an overview
of the methods we observed in the Android malware
samples present in the Malpedia [1] corpus. We man-
ually analyzed the samples and identified their string
deobfuscation routines. Based on this analysis, we
were able to characterize threemajor string encryption
classes, which will be described in more detail later on
in this section. Note that our taxonomy focuses not
on the actual string encryption algorithm but on how
they are implemented. That is, our taxonomy does not
divide classes based on whether the string has been
obfuscated using XOR, AES, or DES, but rather where
and how the deobfuscation routine is implemented.

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 15

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

String Encryption

String Repository

Pass String

Static Resources

App Code

<clinit>

Static Method

Static Class
Static Method

Encrypted String

Native Library
Completely Native

Native to Bytecode

Figure 2: Taxonomy of Android string encryption techniques.

At the time of writing, Malpedia contains 96 dif-
ferent Android malware families. We favored Mal-
pedia over other datasets such as the Android Mal-
ware Dataset (AMD) [6] or Android PRAGuard [7], be-
cause it is standardized, maintained, and the most up
to date dataset available. Moreover, as Malpedia con-
tains multiple versions of malware samples seen over
time, it allows for the observation of evolving behav-
iors, such as obfuscation techniques, which possibly
change with a new generation of a malware family.

In our analysis of the malware samples of the Mal-
pedia corpus, we found that 50 out of the 96 families
made use of string encryption. Most of the samples
used just a single string encryption technique. Still, we
also encountered samples using two or more differ-
ent techniques. Moreover, some samples used differ-
ent routines to implement the same string encryption
technique (cf. Table 4 for details).

Fig. 2 visualizes our taxonomy. We distinguish be-
tween threemain classes: String Repository (SR), Pass
String (PS), and Native Library (NL). Due to space lim-
itation, we can not provide a detailed descriptions of
all of the single sub-classes. Please refer to the on-
line version of our taxonomy [5] for a more elaborate
description including code examples.

In the following subsections, we provide a descrip-
tion of the top-level string encryption classeswe found
during our analysis of the malware samples contained
in the Malpedia corpus. The String Repository class
contains all string encryption techniqueswhere the en-
crypted strings are centrally provided and the deobfus-
cation part queries this central location for the values
it needs. On the other hand, Pass String refers to im-
plementations where the encrypted strings are directly
passed to the decryption routines. The Native Library
method indicates that the encrypted strings as well as
their corresponding decryption routines are part of the
native code. Access to the decrypted data structures
is provided only through the JavaNative Interface (JNI,
cf. [8]). Fig. 3 illustrates these different string encryp-
tion types. In this figure, 1 indicates an encrypted
value and 2 the appropriate decryption routine. 3
and 4 denote decrypted values. For theNative Library
method, 3 depicts the decrypted value passed from
the native code to the bytecode and 4 the provision
of the decrypted strings in the context of the bytecode.

Note that our taxonomy is agnostic with regard
to the representation of the encrypted strings. The
strings can either be encrypted ASCII or UTF-8 strings
or a byte, int, or char array, which is later—usually after
the decryption—transformed into a regular string.

2.1 String Repository

This class of string encryption has all of the encrypted
strings stored in a table-like data structure. There can
be one central String Repository for the entire app or
there can be a String Repository per class. For per-
formance reasons, the String Repositories are typi-
cally provided in static fields and, therefore, get initial-
ized in the static class initialization method <clinit>

(cf. [9, 10]). Fig. 4 shows encrypted strings as byte ar-
rays inside the static class initializer of a decompiled
Backdoor.Android.OS.Triada 2016 sample.

Figure 4: String Repository implemented as <clinit>-
method from a decompiled sample of the malware Back-
door.Android.OS.Triada 2016.

In some cases the decryption is already carried out
inside the method which initializes the String Reposi-
tory. This basically means that the String Repository
data structure never gets populated with encrypted
values, but straight with the decrypted values.

Apart from the static class initializer, other re-
sources are used as string repositories, too. For
instance, a file inside the assets folder containing
the encrypted strings or resource files inside the res

folder. A detailed list of resource locations used by the
malware families we analyzed can be found online [5].

Common to all String Repository implementations
is the fact that either the already decrypted values or
the encrypted values, which are then passed to their
decryption routines, are pulled from that table. The left
side of Fig. 3 illustrates this basic idea of this string en-
cryption type.

16 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

String Repository Pass String Native Library

APK

JNI 3

2

4

....

1

....

bytecode

native codenative code

APK

1

2

3

....

bytecode

2....

1

pull pass

APK

pass

....

....

....

1

2

3

bytecode

Figure 3: Basic method of operation of the top-level string encryption classes.

2.2 Pass String

In this approach, the string decryption part is invoked
whenever a string has to be decrypted, with the en-
crypted strings being passed directly to the deobfus-
cation routine. A simplified example of this method is
shown in Fig. 5. Here, the two encrypted strings v0 and
v1 are directly passed to the decryption routine and the
decrypted string is then stored in the register v0.

const−st r ing v0 , " TWF5IHRoZSBiaXRzIGFuZAo= "
const−st r ing v1 , " IGJ5dGVzIHdpdGggeW91Lgo= "
i nvoke−sta t ic { v0 , v1 } , La/b/c ; −>a (

L j a va / l ang /S t r i ng ; L j a va / l ang /S t r i ng ;)
L j a va / l ang /S t r i ng ;

move−result v0

Figure 5: Pass String example in smali code.

We differentiate between two subclasses: en-
crypted string and static method. The only difference
between these two classes of Pass String are the lev-
els of indirection to resolve until the encrypted strings
are passed to the deobfuscation routine. These indi-
rections have several reasons. One is the conversion
of the encrypted string into the data structure its cor-
responding decryption routine expects. Another form
of indirection is the invocation of, for instance, a static
method which only returns the encrypted string as pa-
rameter for the decryption routine.

2.3 Native Library

The third class we identified to implement string en-
cryption is Native Library. Here, encrypted strings as

well as their corresponding decryption routines are
part of the native code (1 and 2 on the right of
Fig. 3). After the deobfuscation part has been exe-
cuted, the JNI provides access to the decrypted data
structures (3) and fills a String Repository like data
structure in the bytecode context (4). Unique to the
native library approach is the complete implementa-
tion of the string encryption into the native part of an
Android application.

Theoretically, a native library could also be used as
a form of a String Repository containing the encrypted
strings. The same holds for Pass String. Here, only
the decryption routine could be implemented in the na-
tive library and executed whenever an encrypted string
is passed to it trough the JNI. However, we never en-
countered these implementations of string encryption
during our analysis.

In our dataset the Native Library method was used
only in the flexispy malware family [11]. Inside the na-
tive library multiple functions build and decrypt the en-
crypted strings. These decrypted strings are provided
to the app to fill a byte array with the decrypted con-
tent.

2.4 String Encryption in Android Malware

Table 1 provides an overviewof the classification of the
malware families we analyzed with regard to our tax-
onomy. As already mentioned, there are 46 families
which do not use string encryption at all, while 50 fam-
ilies do. Among these families String Repository and
Pass String are the most frequently used methods. To
bemore precise, the <clinit>-method is the preferred

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 17

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

String Repository implementation and passing the de-
crypted strings directly to its decryption routine is the
preferred Pass String implementation. NL, on the other
hand, has been rarely used. The table also reflects the
fact that there are some families which use more than
one technique. This is why the numbers do not add up
to 50.

A more detailed listing of the classification can be
found in the Appendix in Table 4.

3 Related Work

While the field of Android string encryption is still
mostly uncharted, there are a fewnoteworthyworks re-
lated to string encryption in Android apps. First, there
are approaches focusing on the identification of en-
crypted strings or encryption and decryption routines;
second, there are approaches trying to actually resolve
string (and other) deobfuscations.

3.1 Identification of Encrypted Strings

Dong et al. [4] conducted a large-scale survey of ob-
fuscation techniques implemented in Android apps.
They used apps from various app stores and malware
databases to derivemachine learningmodels or signa-
tures to detect the fourmost popular obfuscation tech-
niques. To detect string encryption, they built a ma-
chine learning model based on the commercial obfus-
cators DashO and DexProtector. Moreover, they modi-
fied existing approaches to detect cryptographic func-
tion to be better suited for the Android platform. They
found that string encryption is mostly present in mal-
ware and not in benign apps. Moreover, they iden-
tified that malware samples typically use more than
one cryptographic function. Yet, it is clear whether the
cryptographic functions identified are, in fact used, for
string encryption or for different purposes. Further-
more, it is not obvious whether the model used to de-
tect encrypted strings works equally well for strings
that have not been encrypted with one of the two com-
mercial obfuscators.

Another approach was used in AndrODet[12] which
focused on certain features of strings inside an APK
which is then used for their online learning system
through Data Stream Mining (henceforth DSM). How-
ever, this approach focuses only on encrypted strings
which are already in the constant pool of an APK.
Hence, encrypted strings which are stored as other
data types such as character or byte arrays are not
considered.

Instead of only considering the encrypted strings,
Kühnel et al. [13] focuses on identifying the crypto-
graphic routines among others inside an APK. Hereby
they identify whether or not encryption is used there.
Although they are able to identify string decryption rou-
tines with this, they also identify encryption routines
with other purposes (e.g. encrypted network commu-
nication).

3.2 Deobfuscation Approaches

Dex-Oracle [14], JMD [15], Deobfuscator [16] as well as
the approach of Moses and Mordekhay [17] are using
pattern recognition techniques to identify string obfus-
cation in static analyses. The encrypted strings, to-
getherwith a list of function calls and argument values,
are then passed to a dynamic module. This dynamic
module executes the provided function calls and re-
turns the results to a module, which then patches the
app code using the decrypted strings. All of these
approaches work well for obfuscation techniques for
which a corresponding pattern is known and imple-
mented. They are, however, not able to detect and
resolve techniques that cannot be described using a
static pattern.

Simplify [18, 19] uses virtual execution to resolve
different obfuscation types an app uses. A context
sensitive graph is generated representing every pos-
sible execution path including all possible registers as
well as class states for each execution of each instruc-
tion. Afterwards, the graph is analyzed and several op-
timizations are applied such as constant propagation.
Depending on the sample, especially on huge samples,
this can result in what is known as the path explosion
problem. Moreover, keeping the virtual execution envi-
ronment up to date with current changes to Android is
quite cumbersome and error prone.

Another approach is the monitoring of executed
DEX bytecode as it is done in DexMonitor [20]. To re-
duce the scope of traced instructions it uses selective
monitoring tomonitor only invoke and return instruc-
tions. This way, all method invocations and their return
values are tracedwhich eventually yields the decrypted
strings. However, only executed code paths of the app
can be monitored. In addition, this approach is sus-
ceptible to time bombsdeliberately included to impede
dynamic analyses.

TIRO [21] is able to detect and deobfuscate
language-based and runtime-based obfuscations via
dynamic instrumentation. The dynamic instrumenta-
tion is based on a prior static analysis to indicate what
has to be instrumented. Harvester [22] uses static
code slicing to execute paths leading to specific code
locations, such as reflection invocations, and is able
to deobfuscate all obfuscated values encountered in
those executed paths. However, both approaches fo-
cus only on certain parts of an application and could,
therefore, miss obfuscated strings. Furthermore, both
approaches are not fully available.

4 DeStroid

In this chapter, we introduce DeStroid, our approach
to automatic string decryption. Fig. 6 illustrates its
main steps: given an APK or DEX file, an initial pre-
processing step is performed. Here, the bytecode of
the app is transformed into an object-oriented repre-
sentation. At its core, DeStroid consists of two stages:
a static analysis stage called DeStroid Heuristic and a

18 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

Class Sub-Class Occurrances Aggregated Values
String Repository Static Resources 6

50

<clinit> 21
Static Method 1
Static Class 1

Pass String Encrypted String 49
Static Method 7

Native Library Completely Native 1
Native to Bytecode 1

No String Encryption 46 46

Table 1: String Encryption distribution in malware families and its derivation for each sample taken from Malpedia (as of
October 2019).

dynamic analysis stage called Dynamic Deobfuscator.
Provided with the object-oriented representation, the
DeStroid Heuristic is responsible for detecting the en-
crypted strings and the deobfuscation part contained
in the app. Moreover, it also infers the type of the string
encryption technique used. This information is then
passed to the Dynamic Deobfuscator. This stage im-
plements the actual deobfuscation of the strings by
dynamically executing the deobfuscation parts identi-
fied in the previous step. Finally, the APK or DEX file is
patched with the deobfuscated strings. At the same
time, the decrypted strings as well as the identified
deobfuscation routines are written to separate result
files.

APK/DEX

obfuscated
strings

010110..

Preprocessing

DeStroid
Heuristic

static + dynamic analysis

Dynamic
Deobfuscator

patching deobfuscated strings

smali code
(dexlib2)

01
101
1101
01101

Patched
APK/DEX

deobfuscated
strings

010110..

Figure 6: DeStroid architecture.

The following sections describe the steps DeStroid
performs in more detail.

4.1 Preprocessing

As already mentioned, the preprocessing step is re-
sponsible for transforming the bytecode of an app into
an object-oriented representation (1 in Fig. 7). In our
implementation, we use dexlib2 [23] for this task, but
in principle, other frameworks like Soot [24] could also
be used here. The only requirement we have on the
framework being used is that the outputmust be smali

code. Of course, a higher quality output of the prepro-
cessing tool is beneficial for our further analysis steps.
The contrary is also true: malware with means to ob-
struct analyses with the preprocessing framework will
also evade the further analysis of our approach.

4.2 DeStroid Heuristic

The DeStroid Heuristic serves two main purposes:
first, it identifies the encrypted strings. Second, it is
responsible for finding the subset of the app that is re-
quired to perform the decryption of these strings.

Fig. 7 illustrates the DeStroid Heuristic stage in
more detail. The left part (2) depicts the identifica-
tion process using two heuristics. Here, also the string
encryption class is inferred, which, in turn, determines
what we call the deobfuscation type. This type de-
fines which runtime deobfuscation techniques will be
applied in the following Dynamic Deobfuscator stage
and corresponds to one of the classes of the taxonomy
defined in Section 2.

Based on the results of the heuristics, we generate
an APK to be used in the Dynamic Deobfuscator stage
(3). DeStroid comes with a deobfuscation template
engine. This is used to generate a minimal app which
gets extendedwith the encrypted strings and the deob-
fuscation part of the original app. Besides these parts
of the original app, the generated APK contains just the
code required to execute the deobfuscation part on the
obfuscated strings.

APK/DEX

bytecode

obfuscated
strings

deobfuscation part

010110..

DeStroid Heuristic

1

dexlib2

Pass String
heuristic

<clinit>-method
heuristic

deobfuscation template

bytecode

obfuscated
strings

deobfuscation part

DEX file

template
creation

clinit.constant?

clinit.method?

No

No

3

2

4

2b

2a

2c

Figure 7: Steps of the DeStroid Heuristic stage.

Currently, our prototypical implementation of De-

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 19

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

Stroid supports the three most common obfuscation
classes found during our manual analysis: <clinit>
(SR), Encrypted String (PS), and Static Method (PS).
The other classes are currently not considered yet, but
can be easily implemented later on.

In the following paragraphs, we describe how we
handle the currently supported obfuscations types.

The most commonly used technique is the
<clinit> class. In addition to the static class ini-
tialization, also static fields are initialized within the
<clinit>-method.

The basic idea of our approach to detect and de-
obfuscate this class is to exploit that the <clinit>-
method will either contain the encrypted strings and
build a string table with the encrypted strings or the
decryption of the encrypted strings is directly applied
inside the <clinit>-method. We call the former man-
ifestation clinit.method and the latter clinit.constant.

If clinit.method has been detected, the decryption
routine has to be executed on values of fields of type
java.lang.String or on array fields of type int, char,
or byte in order to obtain the decrypted values. The ex-
pected decryption routine is of type static because the
fields which have been written have also to be static.

If clinit.constant has been detected, the deobfus-
cation takes place implicitly through the static initial-
ization block. Therefore, the deobfuscated value is ex-
pected to be written to certain fields. Those fields are
called deobfuscation fields.

When the string table with the encrypted strings is
build, there will be write access to all of the static fields
which are used for the string table at some point. Con-
sequently, there will be a method which is invoked for
each field of the string table. This method is the de-
cryption routine. When the decryption is already ap-
plied inside the <clinit>-method, then all of the static
fields which get written inside the method will contain
the decrypted values.

More precisely, our approach works as follows.
First, the APK is read and filtered for classes contain-
ing a <clinit>-method. Next, the <clinit>-methods
are analyzed to check whether they fulfill at least one
of the following criteria:

• Array instructions: Either an array has to be writ-
ten or a new array of type byte, int, or char has to
be created inside the <clinit>-method. Further-
more, this new array should have at least a size
greater or equal to twenty. We choose twenty
as manual tests indicated that this value works
best.

• String instructions: strings or a buffer of strings
is created or initialized inside the <clinit>-
method.

Classes fulfilling the above mentioned criteria are
the starting point for the further analysis steps where
we compute a static backward slice of the remaining
<clinit>-method.

A program slice is an executable program that is
obtained from the original program by removing state-

ments that are not required in order to replicate the
behavior of the original program with respect to the a
slicing criterion—the value of interest. This slicing cri-
terion is defined by a program point and a set of pro-
gram variables.

When a backward slice is computed it consists of
all statements andpredicates thatmay affect the value
of those variables. On the other hand, a forward slice
consists of all statements and predicates in a pro-
gram that may be affected by the value of those vari-
ables [25]. Static indicates, that the slicing is done only
on the statically available information of the sliced pro-
gram.

<clinit> method n

method n+1

method n+2

Figure 8: Static backward slicing outlined for the <clinit>-
method.

The slicing criterion in our example is the
<clinit>-method and therefore the original program
is reduced to all statements which a necessary to ex-
ecute this <clinit>-method.

Thus, all method invocations and class instantia-
tions inside the <clinit>-method have to be resolved.
Fig. 8 illustrates this static backward slicing.

The subset of the original APK contains either the
decryption routine or the instructions to decrypt the
encrypted values inside the <clinit>-method. We
first focus on all fields of the <clinit>-method where
write access is performed by methods other than the
<clinit>-method. If the field is of type string (i.e.
contains the bytecode sequence Ljava;lang/String;) it
is added to a list of possible deobfuscation fields. A
deobfuscation field is a field which contains the de-
crypted string value when its appropriate <clinit>-
method gets executed. In case the field is not of type
string but an array of type char, integer, or byte, a
counter for each of the fields is incremented. If this
counter is greater or equal to the number of elements
in the list of possible deobfuscation fields, the decryp-
tion is set to the deobfuscation type clinit.method. Oth-
erwise, the deobfuscation type is set to clinit.constant.
In this case, it will stop here and a subset of the origi-
nal APK is built for the runtime decryption. Otherwise,
it will proceed in detecting the decryption routine.

In order to identify the decryption routine for the de-
obfuscation type clinit.method a static forward slice is
computed on each field (cf. 10) until it is passed to a

20 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

method. This implies following the register which ref-
erenced the appropriate field. Usually, this results in
the same method for each field, but there is the possi-
bility that not all fields have been used as a container
for the encrypted strings. Therefore, themethodwhere
the static forward slice results themost is specified as
the decryption routine. When the <clinit> heuristic
successfully detects the decryption routine it will stop
here (and starts building the deobfuscation template)
otherwise the second heuristic will be executed.

The second approach—pass string heuristic—is us-
ing an extended version of the heuristics of Type E1
and E2 by Kühnel et al. [13] to identify the used decryp-
tion routines. The E1 heuristic is used to identify en-
cryptions which are based on common encryption API
calls in Android. On the contrary, the E2 heuristic is
used to identify custom encryption routines by looking
for certain patterns of bit and byte operations.

Unlike stated in the paper by Kühnel et al. (cf. 3.1),
at first we filter all implemented methods for their pa-
rameters and return value (cf. 1 in Fig. 9). The pa-
rameters and the return value have to contain at least
the bytecode type Ljava/lang/String; or an array of type
char, int or byte. When these requirements are fulfilled
the heuristics E1 and E2 are applied in a little different
way (illustrated as 2). Otherwise, the heuristic will
abort and report that no string encryption could be
found.

const -st r ing v0, " TW F5IH RoZSB iaX RzIGFuZCB ieX R lcyB 3aX RoIH lvdS4K "

invoke-st at ic { v0} , Lmy/ st r ing/ D ecr ypt or ;-> decr ypt (L j ava/ lang/ St r ing;)L j ava/ lang/ St r ing;

.../ Decrpyt or ;-> decrypt (.. met hod 2

met hod 3

4

1

3

.../Decryptor; -> decrypt(.. 2

Figure 9: Static backward slicing of a decryption routine and
their input

4.2.1 E1

Our implementation of E1 tries to detect the standard
Java encryption API or common third party crypto-
graphic libraries as well. Those libraries are java/secu-
rity, javax/crypto, Lorg/jasypt, Lgnu/crypto, org/boun-
cycastle and com/chilkatsoft. Next—which is an ex-
tension to the stated E1 heuristic of Kühnel et al.—we
consider only those methods as a string decryption

routine if we find an instruction which indicates a de-
cryption invocation. This can be easily identified for
each library regarding their given parameters. When
we encounter the appropriate instructions which indi-
cates a decryption with the used cryptographic library,
the function is added to the list of possible decryption
routines.

4.2.2 E2

The adapted E2 version tries to identify custom de-
cryption methods which are used for decrypting
strings. Those decryption functions follow a certain
sequence of operations [13, p. 4]. At first, an array of
data is passed to the function. This array data can
be passed in three different ways. Data is either con-
verted into a byte array directly, a new empty byte array
is created and afterwards filled with data, or an array
is returned as a parameter from a method. Eventually,
this array data is read and multiple bit and byte opera-
tion are applied, ending with an element assignment.
Those bit or byte operations consist of bitwise opera-
tions, shifts and bit or byte math operations. The bit
and byte operations including their assignment should
repeat in blocks (cf. [13]). For each block a counter
is incremented. When this counter is five or higher
(cf. [13]) this functions gets added to the list of possi-
ble decryption routines.

After E1 and E2 are finished, the deobfuscation type
is set to Pass String and the list of possible decryp-
tion routines is sorted by the number of invocations.
The top five functionswith at least four invocations are
now considered as decryption functions and they are
added to a list of decryption routines. Due to our man-
ual analysis of the different Android malware samples
we found that each decryption routine was invoked
at least four times. Subsequently, a backward slice
based on each decryption routine is computed on reg-
ister level to receive the encrypted input values (3 -
4 in Fig. 9). If the input value cannot be computed
because, for instance, the input value has to be com-
puted during runtime or received from network, this
decryption routine is removed from the list of decryp-
tion routines. Otherwise, the encrypted values which
has to be either a string or an array of type char, int
or byte are put into a map regarding their decryption
routine. Hence, the second approach stops here and
starts building the deobfuscation template.

In some cases it might happen that both ap-
proaches are not able to detect neither the encrypted
strings nor their decryption routine. For those cases
we offer the possibility to set the decryption routine
manually or to set an encrypted string for the De-
Stroid Heuristic. If an encrypted string (either with its
associated instruction or not) is specified, the APK
searches for the bytecode containing this value (see
1 in Fig. 10). When the appropriate bytecode is iden-
tified, a forward slice on the register containing the en-

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 21

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

crypted value is performed until its value is passed to
string like data structure (see 3).

The method which has been used to return a string
through that value is then classified as the decryption
routine. Fig. 10 visualizes the static forward slicing.

After the decryption routine has been identified, a
backward slice is computed on register level to receive
the encrypted input values (cf. section 4.2.2 and the
deobfuscation template is generated.

const -st r ing v0, " TW F5IH RoZSB iaX RzIGFuZCB ieX R lcyB 3aX RoIH lvdS4K "

invoke-st at ic { v0} , Lmy/ st r ing/ D ecr ypt or ;-> decr ypt (L j ava/ lang/ St r ing;)L j ava/ lang/ St r ing;

.../ Decrpyt or ;-> decrypt (.. met hod 2

met hod 3
move-r esul t v0

return decrypted
st ring

1

....
3

2
arbitrary	instructions	in	between

.../Decryptor; -> decrypt(..

Figure 10: static forward slicing on an encrypted string

Independent from the heuristic a subset of the orig-
inal app is created for the runtime decryption—the
deobfuscation template. This subset contains only
those instructions which are needed to execute the
deobfuscation process. Those instructions are iden-
tified through the computed static backward slice in
the beginning. Furthermore, an additional class to
this subset is included which state the identified de-
obfuscation type (cf. 4.2). In addition to this, a
map for the deobfuscation process is created depend-
ing on the identified deobfuscation type. The map
for deobfuscation types clinit.method and Pass String
contains the decryption routine and their appropri-
ate encrypted passed values, whereas the deobfus-
cation type clinit.constant is containing a map of the
<clinit>-method and its deobfuscation fields (see
4.2).

4.3 Dynamic Deobfuscator

The result of the DeStroid Heuristic is a subset of the
original DEX bytecode with some additional informa-
tion (reduced APK) to trigger the decryption routines
of the analyzed APK. Depending on the string encryp-
tion type, this additional information is either a map
of encrypted values and their decryption routine or a
mapwith classes and their deobfuscation fields which
should hold the decrypted values (cf. section 4.2). This

reduced APK is then pushed on an Android device or
an emulator (see 1 at Fig. 11).

Next the deobfuscation process is triggered (cf.
2). According to its deobfuscation type an in-
stance of the respective decryption routine or of the
<clinit>-method is created. The decryption routine
is directly executed with its mapped input and the
<clinit>-method is already executed when its class
gets instantiated. Therefore, the deobfuscation fields
of the class are now invoked.

Reduced APK

bytecode

obfuscated
strings

deobfuscation part

deobfuscation process

virtual/physical runtime

Patched APK

bytecode

deobfuscated
strings

deobfuscation part

010110..

patching

1

2 3

const-string v0, "NDIgaXMgdGhlIGFuc3dlcgo="
invoke-static {v0}, La/b/c;->a(Ljava/lang/String;)Ljava/lang/String;
move-result v0

3a

3bconst-string v0, "42 is the answer"

patching

Figure 11: Runtime deobfuscating with Dynamic Deobfusca-
tor and its patching process.

The values of the decrypted strings are reported to
logcat, Android’s logging facility. A separate process
monitors the log and keeps a record of the dynamic
information reported. When the deobfuscation is fin-
ished, this record is used by the patching routine. Be-
side the decrypted values, the record also contains the
exact bytecode location in order to apply the patching.

Finally the patching of the encrypted strings is ap-
plied (cf. 3). In order to do this, the patching routine
replace the encrypted strings and their decryption in-
vocation (3a) given by its bytecode locationwith their

decrypted counterpart (3b).

5 Evaluation

As already mentioned, our dataset consists of 50 dif-
ferent Android malware families in varying versions.
This yields a total of 79 different APKs with string en-
cryption.

Due to our manual analysis of each sample we
are aware of each decryption implementation—either
it is a decryption routine or there is a decryption part
directly applied to the encrypted strings. In order to
specify the total number of decrypted strings for each
sample, we count the number of invocations of the
decryption routine. Normally, this reveals the number
of decrypted strings. Unfortunately, in some cases the

22 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

Class
(# deobfuscations) Sub-Class deobfuscator JMD Dex-Oracle simplify DeStroid

String Repository Static Ressources (29) 0 0 0 0 0
(2434) <clinit>(1678) 0 0 967 33 1453

Static Method (421) 0 0 0 0 0
Static Class (306) 0 0 0 0 302

Pass String Encrypted String (6534) 0 0 2117 37 4529
(6658) Static Method (124) 0 0 0 0 106

NL Completely Native (51) 0 0 0 0 0
(117) Native to Bytecode (66) 0 0 0 0 0

Total 9209 0 0 3084 70 6390

Table 2: Overview of the evaluation results.

decryption is directly applied to the encrypted strings
and, therefore, there was no decryption routine at all
whose invocations could be count. In those cases,
all of the decrypted results have been passed to an
array data structure. Then, we use the number of ele-
ments in those arrays as the total number of decrypted
strings. Table 3 list the total number of decrypted
strings for each evaluated sample.

To assess the effectiveness and efficiency of our
approach, we compared it against all free available
string deobfuscation approaches (cf. 3.2). Those
approaches are Dex-Oracle [14] (version 1.0.6), sim-
plify [18, 19] (version 1.2.1), JMD [15] (version 1.6) and
Deobfuscator [16] (version 1.0.0).

Simplify is a comprehensive project which offers a
lot of possibilities for deobfuscation due to its differ-
ent optimizers. It works best, when we point simplify
directly to the part of the APK where we want to re-
move obfuscations (cf. [26]). Thus, we run simplify in
two configurations: the default option and only deob-
fuscating the class initializer of each class. For JMD
as well as for Deobfuscator we use their generic deob-
fuscation approach which is generic string decryption
for JMD and constant folding for Deobfuscator utiliz-
ing its PeepholeOptimizer. The runtime deobfuscation
of DeStroid and Dex-Oracle are executed on a Google
Pixel 2 XL phone with Android 9.0 for applying their de-
cryption logic. Apart from the aforementioned options,
we used the default configurations of the deobfusca-
tion approaches.

The assessment of the deobfuscated sampleswas
done by comparing the strings (DEX bytecode const-
string or const-string/jumbo) of the original sample
and its corresponding deobfuscated sample. The
number of new strings inside the deobfuscated sam-
ple is counted and compared to the expected total
number of decrypted strings (cf. beginning of section
5). The reason for this, is that all approaches have in
common that they reveal a patched respectively de-
obfuscated APK. The patching — this means inserting
new strings to the APK—are the results of their deob-
fuscation approach.

Table 2 lists the results of the different deobfusca-

tion approaches. The first column indicates the dif-
ferent string encryption types and their total number
of deobfuscations. This column highlight the effec-
tiveness of the respective deobfuscation approach in
terms of the existing string obfuscation. All further
columns list the different approaches regarding their
total deobfuscations for each string encryption type.
The last row summarize the overall numbers of deob-
fuscations of the respective deobfuscation approach.
A detailed listing of the evaluation results can be found
in Appendix on Table 3.

A false positive in the sense of this evaluation
would applying a false decryption routine to the en-
crypted strings which didn’t occur during our evalua-
tion and thus not present in the table. This is due to
the fact, that all deobfuscation approaches rely on the
code of the given sample and only implicitly on the
identified encrypted strings. Most approaches search
for simple string encryption patterns and then watch
for their transformation during execution. Simplify, on
the other hand, uses constant propagation on all meth-
ods and our approach either applies a decryption rou-
tine to its given input or treats the content of possible
deobfuscation fields as decrypted strings. Thus, none
of the approaches are able to use a false decryption
routine to encrypted strings or use a decryption rou-
tine with false strings.

Our prototype of DeStroid was able to successfully
deobfuscate at least some encrypted strings in 78 %
of all obfuscated samples. To be more precise, 44 of
the 79 samples could be deobfuscated completely and
10 other samples could be deobfuscated to a degree
of ≥ 50% and < 100%. Eight more samples could at
least deobfuscated to < 50%. Only 17 samples could
not be deobfuscated.

We investigated the overall 17 samples which have
not been deobfuscated and found that these sam-
ples could not be deobfuscated because the detection
of the decryption routine was unsuccessful. In case
of the retefe malware family [27] the deobfuscation
failed because the encrypted resources are stored in
the resource file which is currently not considered as
a form of string table implementation. An extension
of clinit.constant to consider resource files as string

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 23

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

tables could solve this. In the case of the marcher
malware family [28] the deobfuscation failed because
the string encryption used by this malware family em-
ploys a string replacement removing the noise in the
initialized strings. This kind of string replacement is
currently not considered as a decryption routine. Fur-
ther analysis of the partial deobfuscated samples re-
veals that multiple string encryptions in one sample
occurred. Therefore only one string encryption type
has been deobfuscated because our current prototype
stops further analyzing when it successfully identified
an obfuscation type.

The other evaluated deobfuscation approaches
performed quite different. JMD and Deobfuscator per-
formed as expected due to their focus on commer-
cials obfuscators and limited generic deobfuscation
approaches which could not identify any obfuscated
strings in the dataset.

Simplify, on the other hand, ran into timing issues
or errors while trying to run the samples on its virtual
execution environment smalivm. Those erros mostly
caused by handling abstract methods or when instan-
tiating an abstract class or an interface.

Dex-Oracle worked well for some string encryption
implementations. This is because of its string encryp-
tion heuristic and the fact that it is only able to run
static methods. As a consequence, non-static decryp-
tion routine could not be executed. Furthermore, its
string encryption heuristic which is based on regular
expression can only identify very specific implementa-
tions of string encryption.

The results of our evaluation clearly show that our
approach works best for String Repository and Pass
String based obfuscations.

6 Limitations and Future Work

Although our approach proved to be able to improve
the current state in automated decryption of encrypted
strings in Android malware, there are still some limita-
tions which will be discussed in this section.

In caseswheremultiple string encryptions fromdif-
ferent types occurred in one sample, our approachwas
only able to deobfuscate the strings of one of the im-
plemented encryption types. This happens because
the current prototype stops its analysis when an ob-
fuscation type is detected. This is, of course, just an
implementation issue of our prototype and not a flaw
of the general approach.

Furthermore, DeStroid currently focus only on the
bytecode of an analyzed sample. Native code is cur-
rently not analyzed. Here, it would be necessary to look
for native decryption routines or deposited strings in-
side the native code. This is a complex research topic
on its own and beyond the topic of this paper.

For the detection of decryption routines, currently
simple string obfuscations, such as noise on a string,
are not considered. These are planned for future ver-
sions of our prototype.

Further, nested apps which are packed inside a
sample are not considered. The topic of automatic un-
packing of Android application is a research field on its
own and beyond the scope of this paper.

Finally, DeStroid is highly dependent on the quality
of the framework used in the preprocessing step (cur-
rently dexlib2), which makes it vulnerable to all attacks
against this framework. Thus, samples which are pro-
tected against analyses with dexlib2 can currently not
be analyzed by DeStroid. Although these cases were
not encountered during our evaluation, they should be
considered in future developments.

7 Conclusion

In this paper, we presented a survey of string encryp-
tion techniques used in Android malware and its dif-
ferent implementations. We proposed a taxonomy of
these approaches and identified three major methods
used by malware authors: String Repository, Native Li-
brary, and Pass String. Moreover, we proposed De-
Stroid, a hybrid approach for the extraction of the de-
crypted strings by applying the decryption routine on
the encrypted strings. We have shown that this ap-
proach works best for String Repository based obfus-
cation as well as for Pass String based obfuscation
(see table 2). Besides that, it has the big advantage,
that based on a given decryption routine, it is able to
decrypt all corresponding strings.

Using the decrypted strings produced by DeStroid,
it is possible for existing security analysis tools to
achieve amore complete analysis and detection of An-
droid malware.

Acknowledgments: We thank our colleagues Jan-
Niclas Hilgert and Daniel Plohmann for many useful
comments.

Author details

Daniel Baier

Fraunhofer FKIE
Zanderstr. 5, 53177 Bonn
daniel.baier@fkie.fraunhofer.de

Martin Lambertz

Fraunhofer FKIE
Zanderstr. 5, 53177 Bonn
martin.lambertz@fkie.fraunhofer.de

References

[1] D. Plohmann, M. Clauß, S. Enders, and E. Padilla,
“Malpedia: a collaborative effort to inventorize the
malware landscape,” Proceedings of the Botconf,
2017.

24 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

daniel.baier@fkie.fraunhofer.de
martin.lambertz@fkie.fraunhofer.de

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

[2] E. Protalinski, “Android passes 2.5 billion monthly
active devices | VentureBeat,” 2019. [On-
line; https://venturebeat.com/2019/05/

07/android-passes-2-5-billion-monthly-

active-devices/; accessed 01-July-2019].

[3] I. Statista, “Number of available applica-
tions in the Google Play Store from De-
cember 2009 to March 2019.” [Online;
https://www.statista.com/statistics/

266210/number-of-available-applications-

in-the-google-play-store/; accessed 26-
June-2019].

[4] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu,
K. Chen, X. Wang, and K. Zhang, “Understanding
android obfuscation techniques: A large-scale in-
vestigation in thewild,” in International Conference
on Security and Privacy in Communication Sys-
tems, pp. 172–192, Springer, 2018.

[5] D. Baier, “DeStroid - Fighting String Encryption in
AndroidMalware.” [Online; https://github.com/
fkie-cad/DeStroid].

[6] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep
ground truth analysis of current androidmalware,”
in International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment,
pp. 252–276, Springer, 2017.

[7] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and
G. Giacinto, “Stealth attacks: An extended insight
into the obfuscation effects on android malware,”
Computers & Security, vol. 51, pp. 16–31, 2015.

[8] Google Inc., “JNI tips.” [Online; https:

//developer.android.com/training/

articles/perf-jni; accessed 28-May-2019].

[9] Oracle America, Inc., “Chapter 5. Load-
ing, Linking, and Initializing.” [Online;
https://docs.oracle.com/javase/specs/

jvms/se7/html/jvms-5.html; accessed 27-May-
2019].

[10] Oracle America, Inc., “Static initializers.” [On-
line; https://docs.oracle.com/javase/specs/
jls/se8/html/jls-8.html#jls-8.7; accessed
27-May-2019].

[11] D. Plohmann, “apk.flexispy.” [Online;
https://malpedia.caad.fkie.fraunhofer.

de/details/apk.flexispy; accessed 27-June-
2019].

[12] O. Mirzaei, J. de Fuentes, J. Tapiador, and
L. Gonzalez-Manzano, “Androdet: An adaptive
android obfuscation detector,” Future Generation
Computer Systems, vol. 90, pp. 240–261, 2019.

[13] M. Kühnel, M. Smieschek, and U. Meyer, “Fast
identification of obfuscation and mobile adver-
tising in mobile malware,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1, pp. 214–221, IEEE,
2015.

[14] C. Fenton, “Oracle.” [Online; https:

//github.com/CalebFenton/dex-oracle; ac-
cessed 26-June-2019].

[15] E. Schoffstall, “Java bytecode analysis/deobfus-
cation tool.” [Online; https://github.com/

contra/JMD; accessed 26-June-2019].

[16] Java Deobfuscator, “Java deobfuscator.” [Online;
https://javadeobfuscator.com/; accessed 26-
June-2019].

[17] Y. M. Yoni Moses, “Android app deobfuscation us-
ing static-dynamic cooperation.” [Online; https:
//www.virusbulletin.com/uploads/pdf/

magazine/2018/VB2018-Moses-Mordekhay.pdf;
accessed 26-May-2019].

[18] C. Fenton, “Simplify - Generic Android De-
obfuscator.” [Online; https://github.com/

CalebFenton/simplify; accessed 26-June-
2019].

[19] C. Fenton, “TetCon 2016 - Android Deobfus-
cation: Tools and Techniques.” [Online;
https://calebfenton.github.io/2016/04/

23/tetcon-2016-android-deobfuscation/;
accessed 21-June-2019].

[20] J. H. Y. Haehyun Cho and G.-J. Ahn, “DexMoni-
tor: Dynamically Analyzing andMonitoring Obfus-
cated Android Applications,” IEEE Access, vol. 6,
pp. 71229–71240, 2018.

[21] M. Y. Wong and D. Lie, “Tackling runtime-based
obfuscation in android with {TIRO},” in 27th
{USENIX} Security Symposium ({USENIX} Secu-
rity 18), pp. 1247–1262, 2018.

[22] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bod-
den, “Harvesting runtime data in android applica-
tions for identifying malware and enhancing code
analysis,” tech. rep., Technical Report TUD-CS-
2015-0031, EC SPRIDE, 2015.

[23] B. Gruver, “About smali.” [Online; https:

//github.com/JesusFreke/smali/tree/

master/dexlib2; accessed 24-June-2019].

[24] Sable Research Group, “Soot - A framework for
analyzing and transforming Java and Android ap-
plications.” [Online; https://sable.github.io/
soot/; accessed 24-June-2019].

[25] M.Weiser, “Programslicing,” inProceedings of the
5th international conference on Software engineer-
ing, pp. 439–449, IEEE Press, 1981.

[26] C. Fenton, “Simplify - Generic Android De-
obfuscator.” [Online; https://github.com/

CalebFenton/simplify/blob/master/README.

md; accessed 26-June-2019].

[27] D. Plohmann, “apk.retefe.” [Online; https:

//malpedia.caad.fkie.fraunhofer.de/

details/apk.retefe; accessed 26-June-2019].

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 25

https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://github.com/fkie-cad/DeStroid
https://github.com/fkie-cad/DeStroid
https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.7
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.7
https://malpedia.caad.fkie.fraunhofer.de/details/apk.flexispy
https://malpedia.caad.fkie.fraunhofer.de/details/apk.flexispy
https://github.com/CalebFenton/dex-oracle
https://github.com/CalebFenton/dex-oracle
https://github.com/contra/JMD
https://github.com/contra/JMD
https://javadeobfuscator.com/
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Moses-Mordekhay.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Moses-Mordekhay.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-Moses-Mordekhay.pdf
https://github.com/CalebFenton/simplify
https://github.com/CalebFenton/simplify
https://calebfenton.github.io/2016/04/23/tetcon-2016-android-deobfuscation/
https://calebfenton.github.io/2016/04/23/tetcon-2016-android-deobfuscation/
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://sable.github.io/soot/
https://sable.github.io/soot/
https://github.com/CalebFenton/simplify/blob/master/README.md
https://github.com/CalebFenton/simplify/blob/master/README.md
https://github.com/CalebFenton/simplify/blob/master/README.md
https://malpedia.caad.fkie.fraunhofer.de/details/apk.retefe
https://malpedia.caad.fkie.fraunhofer.de/details/apk.retefe
https://malpedia.caad.fkie.fraunhofer.de/details/apk.retefe

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

[28] D. Plohmann, “apk.marcher.” [Online;
https://malpedia.caad.fkie.fraunhofer.

de/details/apk.marcher; accessed 26-May-
2019].

APPENDIX

In the following we list the details of our findings regarding the classification of the ground truth as well as the
evaluation details.

7.1 Evaluation details

Table 3 details the results of the evaluation (cf. section 5).

7.2 Ground Truth Details

Table 4 details our finding for building and classifying the ground truth (cf. Section 2).

26 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

https://malpedia.caad.fkie.fraunhofer.de/details/apk.marcher
https://malpedia.caad.fkie.fraunhofer.de/details/apk.marcher

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

APK (# deobfuscations) deobfuscator JMD Dex-Oracle simplify DeStroid

adultswine.apk (26) – 0 – 0 – 0 – 0 26
anubisspy_sample1.apk (18) – 0 – 0 – 0 – 0 – 0
anubisspy_sample2.apk (18) – 0 – 0 – 0 – 0 18
asacub.apk (11) – 0 – 0 11 – 0 11
bahamut_sample1.apk (6) – 0 – 0 – 0 – 0 6
bahamut_sample2.apk (6) – 0 – 0 – 0 – 0 6
bahamut_sample3.apk (6) – 0 – 0 – 0 – 0 6
bankbot_sample1.apk (426) – 0 – 0 426 – 0 426
bankbot_sample2.apk (454) – 0 – 0 – 0 – 0 454
bankbot_sample3.apk (98) – 0 – 0 – 0 – 0 98
bianlian.apk (421) – 0 – 0 – 0 – 0 – 0
brata_sample1.apk (12) – 0 – 0 – 0 – 0 10
brata_sample2.apk (12) – 0 – 0 – 0 – 0 10
catelites_2017-12-15.apk (71) – 0 – 0 – 0 – 0 65
catelites_2017-12-17.apk (71) – 0 – 0 – 0 – 0 71
catelites_2017-12-21.apk (70) – 0 – 0 – 0 – 0 70
catelites_2018_01_19.apk (66) – 0 – 0 – 0 – 0 60
cerberus.apk (73) – 0 – 0 – 0 – 0 73
comet_bot.apk (498) – 0 – 0 341 37 498
charger.apk (44) – 0 – 0 – 0 – 0 44
chrysaor_sample1.apk (5) – 0 – 0 – 0 – 0 – 0
chrysaor_sample2.apk (5) – 0 – 0 3 – 0 5
doublelocker.apk (586) – 0 – 0 – 0 – 0 287
dualtoy.apk (5) – 0 – 0 – 0 – 0 5
dvmap.apk (16) – 0 – 0 – 0 – 0 16
exobot_sample1.apk (381) – 0 – 0 329 – 0 4
exobot_sample2.apk (374) – 0 – 0 323 – 0 4
exobot_sample3.apk (374) – 0 – 0 323 – 0 4
exodus_sample1.apk (5) – 0 – 0 1 – 0 5
exodus_sample2.apk (5) – 0 – 0 1 – 0 5
exodus_sample3.apk (6) – 0 – 0 1 – 0 6
flexispy.apk (87) – 0 – 0 – 0 – 0 21
flexnet.apk (58) – 0 – 0 – 0 – 0 58
glancelove.apk (118) – 0 – 0 – 0 – 0 118
goldenrat.apk (20) – 0 – 0 – 0 – 0 – 0
gustuff_sample1.apk (72) – 0 – 0 – 0 – 0 72
gustuff_sample2.apk (78) – 0 – 0 – 0 – 0 78
hiddenad.apk (135) – 0 – 0 – 0 – 0 135
hydra.apk (51) – 0 – 0 – 0 – 0 – 0
joker.apk (12) – 0 – 0 – 0 – 0 4
kevdroid_sample1.apk (26) – 0 – 0 – 0 – 0 26
kevdroid_sample2.apk (26) – 0 – 0 – 0 – 0 26
lokibot.apk (525) – 0 – 0 221 – 0 525
marcher_2016-10-19.apk (145) – 0 – 0 145 – 0 – 0
marcher_2016-12-01.apk (154) – 0 – 0 154 – 0 – 0
marcher_2017-01-29.apk (221) – 0 – 0 221 – 0 – 0
marcher_2017-07-26.apk (367) – 0 – 0 367 – 0 4
mazarbot_2017-01-01.apk (44) – 0 – 0 – 0 33 44
mazarbot_2017-08-20.apk (58) – 0 – 0 – 0 – 0 58
mazarbot_2017-10-11.apk (58) – 0 – 0 – 0 – 0 58

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 27

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

APK (# deobfuscations) deobfuscator JMD Dex-Oracle simplify DeStroid

mazarbot_2017-11-07.apk (65) – 0 – 0 – 0 – 0 65
monokle.apk (48) – 0 – 0 – 0 – 0 30
mysterybot.apk (304) – 0 – 0 151 – 0 304
podec.apk (418) – 0 – 0 – 0 – 0 26
pornhub.apk (626) – 0 – 0 – 0 – 0 391
premier_rat.apk (1) – 0 – 0 – 0 – 0 – 0
raxir.apk (1001) – 0 – 0 – 0 – 0 1001
retefe_2014-06-23.apk (2) – 0 – 0 – 0 – 0 – 0
retefe_2014-09-12.apk (2) – 0 – 0 – 0 – 0 – 0
retefe_2014-11-10.apk (2) – 0 – 0 – 0 – 0 – 0
retefe_2015-01-29.apk (2) – 0 – 0 – 0 – 0 – 0
retefe_2015-05-13.apk (2) – 0 – 0 – 0 – 0 – 0
skygofree_2016-11-24.apk (302) – 0 – 0 – 0 – 0 302
slempo.apk (46) – 0 – 0 – 0 – 0 46
slocker.apk (11) – 0 – 0 – 0 – 0 11
smsspy.apk (5) – 0 – 0 – 0 – 0 2
spybanker.apk (39) – 0 – 0 – 0 – 0 39
svpeng.apk (8) – 0 – 0 – 0 – 0 8
telerat.apk (6) – 0 – 0 – 0 – 0 – 0
tempting_cedar.apk (428) – 0 – 0 – 0 – 0 – 0
tinyz_sample1.apk (66) – 0 – 0 66 – 0 66
triada.apk (93) – 0 – 0 – 0 – 0 93
triout.apk (34) – 0 – 0 – 0 – 0 18
viper_rat_dropper.apk (3) – 0 – 0 – 0 – 0 3
yellyouth.apk (19) – 0 – 0 – 0 – 0 – 0
zoopark_v4.apk (15) – 0 – 0 – 0 – 0 10
ztorg.apk (10) – 0 – 0 – 0 – 0 6
ztorg_downloader.apk (368) – 0 – 0 – 0 – 0 368
ztorg_payload.apk (81) – 0 – 0 – 0 – 0 81∑

#deobfuscations : 9209 0 0 3084 70 6390

= 100% deobfuscation ; = deobfuscation ≥ 50% and < 100% ; = deobfuscation < 50%;– = no
deobfuscation; = developed prototype; the hashes of each sample can obtained from the provided

taxonomy (cf. [5])

Table 3: Evaluation results in detail.

28 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

Classification

String Repository NL Pass String

APK

<c
lin

it>

re
ss

ou
rc
es

st
at
ic

cl
as

s

st
at
ic

m
et
ho

d

co
m
pl
et
el
y
na

tiv
e

na
tiv

e
to

by
te
co

de

en
cr
yp

te
d
st
rin

g

st
at
ic

m
et
ho

d

adultswine.apk ✓
anubisspy_sample1.apk ✓
anubisspy_sample2.apk ✓
asacub.apk ✓
bahamut_sample1.apk ✓
bahamut_sample2.apk ✓
bahamut_sample3.apk ✓
bankbot_sample1.apk ✓(2)
bankbot_sample2.apk ✓(2)
bankbot_sample3.apk ✓(4)
bianlian.apk ✓
brata_sample1.apk ✓
brata_sample2.apk ✓
catelites_2017-12-15.apk ✓
catelites_2017-12-17.apk ✓
catelites_2017-12-21.apk ✓
catelites_2018_01_19.apk ✓
cerberus.apk ✓
charger.apk ✓
comet_bot.apk ✓(3)
chrysaor_sample1.apk ✓
chrysaor_sample2.apk ✓
doublelocker.apk ✓
dualtoy.apk ✓
dvmap.apk ✓
exobot_sample1.apk ✓
exobot_sample2.apk ✓
exobot_sample3.apk ✓
exodus_sample1.apk ✓
exodus_sample2.apk ✓
exodus_sample3.apk ✓
flexispy.apk ✓ ✓ ✓(2)
flexnet.apk ✓
glancelove.apk ✓
goldenrat.apk ✓(2)
gustuff_sample1.apk ✓
gustuff_sample2.apk ✓
hiddenad.apk ✓
hydra.apk ✓
joker.apk ✓(3)
kevdroid_sample1.apk ✓
kevdroid_sample2.apk ✓
lokibot.apk ✓(10)
marcher_2016-10-19.apk ✓
marcher_2016-12-01.apk ✓
marcher_2017-01-29.apk ✓
marcher_2017-07-26.apk ✓
mazarbot_2017-01-01.apk ✓
mazarbot_2017-08-20.apk ✓
mazarbot_2017-10-11.apk ✓

Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware 29

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 5, NO. 1, DEC. 2019

Classification

String Repository NL Pass String

APK

<c
lin

it>

re
ss

ou
rc
es

st
at
ic

cl
as

s

st
at
ic

m
et
ho

d

co
m
pl
et
el
y
na

tiv
e

na
tiv

e
to

by
te
co

de

en
cr
yp

te
d
st
rin

g

st
at
ic

m
et
ho

d

mazarbot_2017-11-07.apk ✓
monokle.apk ✓ ✓(3)
mysterybot.apk ✓(5)
podec.apk ✓(2)
pornhub.apk ✓ ✓(6) ✓
premier_rat.apk ✓
raxir.apk ✓(2)
retefe_2014-06-23.apk ✓
retefe_2014-09-12.apk ✓
retefe_2014-11-10.apk ✓
retefe_2015-01-29.apk ✓
retefe_2015-05-13.apk ✓
skygofree_2016-11-24.apk ✓
slempo.apk ✓
slocker.apk ✓
smsspy.apk ✓
spybanker.apk ✓ ✓
svpeng.apk ✓
telerat.apk ✓
tempting_cedar.apk ✓
tinyz_sample1.apk ✓
triada.apk ✓
triout.apk ✓
viper_rat_dropper.apk ✓
yellyouth.apk ✓
zoopark_v4.apk ✓(2)
ztorg.apk ✓
ztorg_downloader.apk ✓
ztorg_payload.apk ✓

✓= used string encryption type; (#) = number of different decryption routines; further information (e.g. the
exact location of the deobfuscation routine) about each sample can obtained from the provided taxonomy (cf.

[5])

Table 4: Ground truth classification details

30 Daniel Baier, Martin Lambertz. DeStroid – Fighting String Encryption in Android Malware

	Introduction
	A Taxonomy of String Encryption Techniques
	String Repository
	Pass String
	Native Library
	String Encryption in Android Malware

	Related Work
	Identification of Encrypted Strings
	Deobfuscation Approaches

	DeStroid
	Preprocessing
	DeStroid Heuristic
	E1
	E2

	Dynamic Deobfuscator

	Evaluation
	Limitations and Future Work
	Conclusion
	Evaluation details
	Ground Truth Details

