
 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

Zoltan Balazs, Malware Analysis Sandbox Testing Methodology [Short conference paper] (numbering of pages to be confirmed)

Malware Analysis Sandbox Testing

Methodology

Zoltan Balazs

MRG Effitas

Budapest, Hungary

zoltan.balazs@mrg-effitas.com

Abstract— Manual processing of hundreds of thousands

of malware samples became impossible years ago.

Sandboxes are used to automate the analysis of malware

samples to gather information about the dynamic

behaviour of the malware. Some malware samples use

known techniques to detect when it runs in a sandbox, but

most of these sandbox-aware techniques can be easily

detected and thus flagged as malicious.

New approaches were invented to detect these sandboxes.

A tool was developed, which can collect interesting

information from these sandboxes to create statistics about

how the current technologies work. After analysing these

results a practical approach will be presented in order to

detect sandboxes. The considered use cases cannot be easily

flagged as malicious.

Some sandboxes do not support network connectivity

under more restricted configurations in order to block data

extraction. But with some DNS kung-fu the information can

be extracted from these appliances as well.

Keywords — Malware Analysis Sandbox, Anti sandboxing

I. INTRODUCTION

The cat and mouse game between network attackers and

network defenders has been changed a lot since the deployment

of endpoint protection systems and traditional network intrusion

detection systems, firewalls, mail and web proxies. The

attackers have access to easy-to-use tools and services to bypass

the conventional protection of enterprises. Firewalls are

bypassed by HTTP based, connect-back C&C servers, proxy

authentication is bypassed by malware calling Windows API

calls which authenticate with the proxy. IDS is bypassed by
obfuscation/encryption. Even sometimes web white-lists are

bypassed by compromising legitimate websites, and exploiting

and controlling the victim through this benign site. Enterprises

all over the world are targets of industrial espionage, nation state

attackers, or high-profile organized criminals.

History shows that the traditional defence tools are not

adequate against targeted attacks. Therefore, the demand for

new technologies addressing such problems has increased. One

of these new technologies is the so called Breach Detection

Systems (BDS).

The most important goal of a Breach Detection System is to

identify infected systems in an enterprise where such cause of

infection can be a known or unknown malware used during the
attack. These systems typically detect the breach itself, allowing

administrators to contain the threat and isolate the vulnerable

systems as soon as possible. Previous examples showed that

these targeted attacks usually last for months or even years.

Therefore, an early detection is crucial for an enterprise.

However, it is worth mentioning that while most of these

systems are marketed as the solution against targeted attacks, for

the attackers these systems are “just another system to bypass”.

For that reason, it is expected that attackers will invent new

methods to bypass these breach detection systems, and it is in

the best interest of the vendors to be aware of potential bypass-

strategies and tactics.

There are three main types of analysis regarding new

malware samples:

1. static analysis based on the executable layout,

signatures of known malware, etc. (used in sandboxes)

2. automated dynamic analysis – runs the sample in a

sandbox and detects suspicious behaviour (mostly used in

sandboxes)

3. manual analysis

In the contrast to manual analysis, the first and second

approach can be (and are) automated, making it both relatively

cheap. Moreover, manual analysis is hard, resource-intensive,

time-consuming, and thus expensive. When attackers bypass the

detection at the first layer and second layer (explained in the

presentation [15]) they can stay under the radar for a longer time.

For penetration testers, it is a very common task to generate

malware, which can persist during the testing engagement. This

malware has to be stealthy on both host and network level. As

more and more companies use malware analysis sandboxes,

penetration testers have to implement new techniques to avoid
detection by these sandboxes. One of the most common

techniques is querying the target system to detect whether it is

running on e.g. CEO notebook, or in a malware analysis

sandbox. If the sandbox is detected, the malware either finishes

execution, or changes its behaviour (e.g. financial malware acts

like adware to avoid detection [9]). During penetration test

engagements, it makes sense to infect the targets with a simple

This paper was presented at Botconf 2015, Paris, 2-4 December 2015, www.botconf.eu
It is published in the Journal on Cybercrime \& Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
c b It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

http://www.botconf.eu/
https://journal.cecyf.fr/ojs

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

(numbering of pages to be confirmed) Zoltan Balazs, Malware Analysis Sandbox Testing Methodology [Short conference paper]

malware. This malware can check the environment, and only

infect intended victims with the real malware. By using this

technique, the real malware can evade detection for a longer

time.

For sandbox developers it is important to know the ways the
sandbox can be detected, and either alert on these attempts, or

fool the malware and emulate a real environment.

And last but not least, for potential buyers of malware
analysis appliances it is important to test how well the sandbox

hides its presence.

II. BACKGROUND

Although not many malware use anti-sandbox techniques to

evade detection, some of them do. The traditional anti-sandbox

techniques include detection of virtualization, running

processes, detection of debuggers, detection of hooked

functions, injected DLLs, etc. Most of these checks can be easily

flagged as malicious. Some advanced techniques are also

known; detecting whether sleep functions are emulated,

detection of network connectivity, mouse movement, etc.

But the traditional virtualization detection techniques can be

detected, and the malware can be blocked.

Also, some traditional sandbox detection techniques (e.g.

know sandbox Windows product ID’s) can both be fooled and

detected. For example, during the research, the following faked

Windows product ID was found: 03DyM 03D 03DyM5G

03DyM

As product IDs contain numeric letters only, this is clearly a

faked one. And while the sandbox detection was bypassed, the

sample was flagged as malicious because it accessed the

Windows Product ID.

Virtualization detection

It is not a trivial task to hide the presence of virtualization

from a malicious process [1]. Nevertheless, despite existing

multiple available tools focused on hiding virtualization ([2],

[3], [4], [5], [14]) how the virtualization can be hidden, there are

always new ways to detect it by exploiting common mistakes.

Other anti-sandbox methods

Some anti-sandboxing techniques involve the protection of

C&C servers by using IP blacklists and IP range blacklists. One

such publicly available project is AVTracker ([6]). This is a

common technique used by malware writers and exploit kit

operators ([7]). Although this technique is usually very effective,

there are some drawbacks, like when the C&C server IP is

revealed and it cannot be used on previously unknown

sandboxes. Additionally, if the malware analysis sandbox uses

the same Internet connection as the regular users, it is not

possible to make a distinction between real users and sandboxes

based on the IP address only.

Other anti-sandboxing technique is to create resource-

intensive tasks, like

• brute-force AES keys ([8])

• multiple memory read-write operations ([10]), which

are impossible to log or keep track.

III. THE SOLUTION

New techniques were invented that can detect the presence

of a real user. By using DNS tunnelling techniques, or the report

the tool can exfiltrate information from otherwise closed

malware analysis appliances. These sandboxes usually try to

obtain the IP of the domains related to the malware network

activity; therefore, it is possible to leak out information from

these closed sandboxes. For instance, if the DNS server for

myhostname.com is controlled by a given administrator, and the

malware performs a query to request the IP address for the
“microsoftofficeisinstalled.myhostname.com” domain, it

would, as consequence, leak information, i.e., Microsoft Office

is installed on the environment where it was running.

Another possible way to extract information from the

malware analysis sandbox is to read the report created by the

sandbox and check the domain names the malware tried to

contact to. For example information about the sandbox can be

hidden in the filenames the tool creates, and these filenames are

usually included in the report. The report can either be emailed

to the attacker (typical for public sandboxes), or downloaded by

someone who has access to the private malware analysis

sandbox (not typical for low-budget attackers). If the domains

contacted information is not available, the tool can create new

files, and hide the information about the sandbox in the

filenames.

The tool - sandbox_tester - will collect all of the important

available information from the sandboxes. Based on this data,

statistics were created which are the best parameters to check for

sandboxes. Based on this data interpretation, most effective
techniques can be implemented in a malware and thus it is highly

possible that the malware can evade even a previously unknown

sandbox.

Implementation of sandbox awareness

APT attackers use so-called validator style malware. This

validator checks the environment, and only drops further

(advanced) malware on the machine, when it is a validated target

(and not a sandbox) (see [11]).

There are three layers where the sandbox-awareness can be

implemented. Each layer has its own advantages and drawbacks.
The decision can be implemented in the malware, on the C&C

server (automatically) or on the C&C server (manual decision).

The following list summarizes the advantages and

disadvantages based on where the decision is made:

Automated, in the malware:

 Advantage: No information leak about C&C address

 Disadvantage: Not everything can be implemented in

this layer (e.g. screenshot analysis), or it is not effective to

update the logic on the client (malware) side

Automated, on the C&C server:

 Advantage: Almost every check can be implemented

(e.g. IP/network based analysis)

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

Zoltan Balazs, Malware Analysis Sandbox Testing Methodology [Short conference paper] (numbering of pages to be confirmed)

 Disadvantage: C&C server information leaked

Manually analyse results at the C&C server:

 Advantage: Powerful (e.g. analyses desktop

screenshot)

 Disadvantage: Expensive

These validator-style malware samples follow the same

logic of sandbox detection as mine – as the best approach is to

implement all three layers, and terminate malware execution at

the first detection.

The unsolvable problems

There are at least two problems which makes hiding the

presence of the sandbox detection hard.

 The first problem is whether sleep calls are simulated or

not. If sleep calls are simulated, it can be detected via
two threads. The first thread makes some calculations

while the second thread sleeps. In a normal environment

the sleeping thread should finish execution later. If sleep

is emulated, the sleeping thread will finish the execution

sooner – and the simulation will be detected. If sleep-

calls are not emulated, the malware can sleep for - e.g. -

30 minutes (or more hours), before starting any activity

([13]). In theory this method can be defeated with

continuous sandboxing, but it complicates the malware

analysis - e.g. - same malware using the same mutexes.

 The second problem is the network connection. Usually,

when malware is dropped on normal targets, the target

has Internet connection (either direct, or at least via web

proxy). If the malware analysis sandbox allows HTTP

traffic (directly or via proxy), information can be leaked

from the sandbox. This information can be used to do a

manual decision whether it is a sandbox or not (e.g.
multiple screenshots during a whole day). If there is no

HTTP connection at all, usually the attackers can decide

not to infect the box, because it is either not important,

or it is a sandbox. A third option is that sandboxes can

emulate the network, but it can be detected as well. For

example by downloading a known resource from an

innocent website - e.g. favicon.ico, and compare the

hash of the file with a known value ([12]).

The ultimate sandbox evasion

The following process can ensure that the real malware is not

dropped into a malware analysis sandbox.

1. Drop a small, simple dropper (validator)

2. Dropper phones back to validator C&C (e.g. once

daily, when user activity is detected)

3. C&C always answers with a new random string (only

one per day per session)

4. New C&C calls should include the latest random string

to receive new ones

5. Only drops the real malware when it receives the

correct new string for days (or weeks)

With this technique the automated analysis can be usually

evaded (even continuous sandboxing), because most sandboxes

don’t have the resources to run a sample for weeks, or to save

the last state and restore it daily. This can make manual analysis

tedious as well - except when the real malware is dropped and

the sample is found via forensics analysis.

IV. TEST CASES

Following is a non-complete list of tests made by the tool:

• Windows product ID – is it a known sandbox product

ID? Or a faked one including alphabetic letters?

• Hard Disk Type, layout – is HDD less than 20 GBytes?

• Hardware layout (processor, memory, motherboard,

BIOS, network cards) – is it running with 256 Mbyte of

memory? Is this a Qemu? Is the MAC address known for

Virtualbox?

• CPU architecture – is CPU type Intel XEON while

attacking a workstation?

• CPU architecture – 1 processor, 1 core only dedicated

to the OS?

• Windows settings (installation date, version, current

time) – e.g. is the current time on the OS years behind the real

current time?

• System uptime – 2 years, 145 Days, 5 Hours, 3

Minutes, 11 Seconds for a desktop? Or only 1 minute?

• Installed programs – is Debugging Tools for Windows

x86 installed?

• Running processes – eg. is cwsandbox.exe running?

• Malware executable name – has the executable

renamed to sample01, virus02 or malware03?

• Screen resolution – is it 640x480? Or 800x600?

• Username, computer name, domain – in a targeted

attack, attackers might know the Windows domain name, and

only allow running if the domain is detected.

• Number of files modified in the previous week in the

user profile – less than one? Not a very typical Windows user.

• Types, number of user files (desktop, documents,

pictures folder) – missing selfies in the picture folder?

• Registry artifacts of user activity – recently opened

files

• Available network shares – no network shares in a

corporate environment?

• Ability to click on message window

• Local ports opened – is port 445 closed?

• Hooks installed – is deletefilew hooked?

• Sleep emulated

• HTTP connection is available – if the malware can’t

access the Internet, it is either a sandbox or an airgapped target

• Mouse movement – how many miles has the mouse

moved in the last week?

• Printers installed – everybody has a printer! Except

sandboxes …

• USB flash drives used – no USB flash drives used,

ever?

• Machine name – is the machine named winxp_maltest?

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

(numbering of pages to be confirmed) Zoltan Balazs, Malware Analysis Sandbox Testing Methodology [Short conference paper]

Screenshot – this is how a normal user desktop looks like

Architectural overview of the proposed solution

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

Zoltan Balazs, Malware Analysis Sandbox Testing Methodology [Short conference paper] (numbering of pages to be confirmed)

V. RESULTS

During the tests the following interesting results were found:

68% of the sandboxes used an environment which is

identified as virtualized, 18% identified as desktop computer,

and 14% as a server (based on “wmic computersystem get

model”).

80% of the sandboxes used a screen resolution of 1024*768

or less.

Most sandboxes use usermode tools to detect malicious

behaviour, for examplr Python winappdbg 1.4, Debugging

Tools for Windows x86, RaptorClient, Dumper.exe,

StaticStreamMgr.exe, etc.

Some sandboxes try to evade the detection of the virtualized

system by renaming VMWare tools to VEWare tools.

14% of the sandboxes used multi-core architecture to

analyse the sample.

26% of the sandboxes used desktop type CPU.

20% of the sandboxes emulated mouse movement.

10% of the sandboxes had 2GByte or more memory.

10% of the sandboxes used flash drive.

None of the sandboxes had printer installed.

8% of the sandboxes had recently modified files in the

Documents folder.

VI. CONCLUSIONS

A new methodology has been proposed to test the anti anti

sandboxing capabilities of malware analysis sandboxes. The

methodology uses HTTP, DNS and report based leak

(information in the created file names) of the information from

the sandbox. Detecting the virtualized environment as a form of

anti sandboxing is becoming less and less effective for attackers,
but other environment dependant anti sandboxing methods can

be used to detect malware analysis sandboxes.

The tool can be downloaded from the following URL:

https://github.com/MRGEffitas/Sandbox_tester

REFERENCES

[1] N. Rin, EP_XOFF, Virtual Machines Detection Enhanced,

2013

https://github.com/hfiref0x/VMDE

[2] Michael Boman - Making Virtualbox nearly undetectable,

2014 http://blog.michaelboman.org/2014/01/making-

virtualbox-nearly-undetectable.html

[3] William Metcalf – Cuckoo building scripts, 2015

https://github.com/wmetcalf/buildcuckoo-trusty

[4] Jurriaan Bremer, VMCloak, a tool for automatically

creating and configuring Virtual Machines for Cuckoo

Sandbox, 2015

http://jbremer.org/vmcloak2/

[5] VirtualBox Anti-AntiVM, 2014

http://www.kernelmode.info/forum/viewtopic.php?f=11&

t=1911

[6] Peter Kleissner, AVTracker

http://avtracker.info/

[7] SpiderLabs Research, Magnitude Exploit Kit Backend

Infrastructure Insight - Part II, 2014

https://www.trustwave.com/Resources/SpiderLabs-

Blog/Magnitude-Exploit-Kit-Backend-Infrastructure-

Insight---Part-II/

[8] Christian Amman, Hyperion: Implementation of a PE-

Crypter, Nullsecurity, 2012,

https://github.com/nullsecuritynet/papers/raw/master/nulls

ec-pe-crypter/nullsec-pe-crypter.pdf

[9] James Wyke, Duping the machine - malware strategies,

post sandbox detection, 2015

https://www.virusbtn.com/virusbulletin/archive/2015/01/v

b201501-duping

[10] Ben Baker, Alex Chiu, Threat Spotlight: Rombertik –

Gazing Past the Smoke, Mirrors, and Trapdoors, 2015

http://blogs.cisco.com/security/talos/rombertik

[11] Kaspersky Labs' Global Research & Analysis Team,

Animals in the APT Farm, 2015

https://securelist.com/blog/research/69114/animals-in-the-

apt-farm/

[12] Joe Giron, Bypassing FireEye, ToorCon 15

https://www.youtube.com/watch?v=wynvicPjRDk

[13] Th4nat0s, No_Sandboxes

https://github.com/Th4nat0s/No_Sandboxes

[14] hfiref0x, VBoxHardenedLoader

https://github.com/hfiref0x/VBoxHardenedLoader

[15] Zoltan Balazs, Sandbox detection: Leak, abuse, test

https://www.botconf.eu/wp-content/uploads/2015/12/OK-

S02-Zoltan-Balazs-Sandbox_mapping_botconf.pdf

	I. Introduction
	II. Background
	III. The solution
	IV. Test cases
	V. Results
	VI. Conclusions
	References

