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Abstract

Conducting research on botnets is often-
times limited to the analysis of active botnets.
This prevents researchers from testing detec-
tion and tracking mechanisms on potential fu-
ture threats. Specifically, in the domain of P2P
botnets, the protocol specifics, network churn
and anti-tracking mechanisms greatly impact
the success or failure of monitoring operations.
Moreover, experiments on real world botnets,
commonly lack ground truth to verify the find-
ings. As developing and deploying botnets of
sufficient size is accompanied by large costs
and administration efforts, this paper attempts
to address this issue by introducing a simula-
tion framework for P2P botnets called Botnet
Simulation Framework (BSF). BSF can simulate
monitoring operations in botnets of more than
20.000 bots to evaluate trackingmechanisms or
simulate takedown efforts. Moreover, commu-
nication traces can be exported to inject traffic
into arbitrary PCAP files for training and evalua-
tion of intrusion detection systems.

Keywords: Botnets, P2P Botnet, Simulation,
Dataset Generation.

1 Introduction

A botnet is a network of inter-connected malware-
infected machines called bots. Bots can be remotely
controlled by a botmaster to carry out a multitude
of malicious activities including Distributed Denial of
Service (DDoS), credential theft, sending spam mail,
distributing ransomware or stealing personal informa-
tion.

While the specific functionalities of a botnet may
vary, a Command and Control (C2) channel is always

present to facilitate remote control access by the bot-
master. Up until today, many botnets use a centralized
C2 architecture, leveraging existing protocols and ser-
vices such as IRC, HTTP or HTTPS. However, central-
ized C2 represents a single point of failure that makes
it easier to take down such botnets. To overcome
this drawback, many advanced botnets use mecha-
nisms such as Domain Generation Algorithms (DGAs)
or fast-flux DNS to hide and distribute the C2 infras-
tructure. Some botnets such as Gameover Zeus [1],
Sality [2] or Hide’n Seek [3] leverage Peer-to-Peer (P2P)
networks, to fully distribute the C2 among all infected
machines, making them highly resilient against take-
down attempts.

A common way to track P2P botnets is reverse en-
gineering the malware and re-implementing the pro-
tocol in tracking mechanisms, namely crawlers and
sensors, to monitor the botnet. To hamper monitor-
ing efforts, botmasters oftentimes implement coun-
termeasures such as rate limiting [2] and automated
blacklisting mechanisms [1]. Evaluating the impact of
such countermeasures, or developing more advanced
monitoringmechanisms is difficult, as experiments on
real botnets are limited to active botnets and often-
times lack ground truth for comparison. A simulation
framework presents a method to alleviate the afore-
mentioned drawbacks. Such a framework can pro-
vide a flexible environment in which monitoring mech-
anisms can be evaluated against a variety of different
settings of botnets and monitoring countermeasures.
In addition, these evaluated settings can also be veri-
fied against the ground truth, something that was not
easily doable in a live botnet. For instance, a botnet
takedown strategy can be carefully planned and eval-
uated for its effectiveness before carrying it out on a
targeted active botnet.

In this paper, we present an overview of the Bot-
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net Simulation Framework (BSF) and its functionali-
ties to simulate P2P botnets.1 BSF is capable of sim-
ulating botnets of more than 20.000 bots and evalu-
ate monitoring mechanisms against advanced coun-
termeasures and novel botnets. Moreover, BSF can be
used in conjunction with an external tool called Intru-
sion Detection Dataset Toolkit (ID2T) [4] to inject P2P
botnet traffic into existing Packet Capture (PCAP) files,
to test and improve Intrusion Detection System (IDS)
and botnet detection mechanisms.

The remainder of this paper is structured as fol-
lows. First, Section 2 provides the reader with back-
ground information and the related work. Section 3
provides an overview of BSF. Section 4 describes
how traffic can be injected into network captures us-
ing ID2T. Section 5 provides an evaluation of BSF and
finally Section 6 concludes the paper.

2 Background and Related Work

In the following, we present some background and re-
lated work which are useful to guide readers in under-
standing our contribution in the remainder part of this
paper.

2.1 Unstructured P2P Botnets

A P2P botnet may be deployed as either a structured
or an unstructured P2P botnet. Considering the fact
that the majority of currently known P2P botnets are
unstructured P2P botnets, we detail some of the com-
mon inner workings of the unstructured P2P botnets
in this subsection. Please note that here onward, we
shall refer to unstructured P2P botnets simply as P2P
botnets for ease of readability.

As bots in a P2P botnet do not rely on any central
entities, e.g., servers, they solely depend upon other
bots in the botnet to remain connected with and to the
botmaster, i.e., for command and updates. Bots form
an overlay that consists of neighborhood relationships
between a bot and a subset of other bots in the over-
lay. The neighborhood relationship of a bot is stored
locally and often referred as the Neighborlist (NL) in
the literature [5].

The establishment andmaintenance of this overlay
is handled in a distributed manner by all participating
bots through a Membership Management (MM) mech-
anism [5]. This mechanism ensures that bots regu-
larly probe for the responsiveness of the neighbors in
their NL. Neighbors that are found to be unrespon-
sive, e.g., due to disinfection or churn effects, can be
replaced by requesting for additional candidates from
other responsive bots. Each entry in a NL minimally
consists of an IP address and optionally the port of
bots that are directly reachable over the Internet, i.e.,
superpeers. Bots that are behind NAT-like devices or
stateful-firewalls, i.e., non-superpeers, would not re-
main in the neighborlists of bots as they are not di-

rectly reachable. Instead, they rely upon the super-
peers to remain connected to the overlay and to get
new updates from the botmaster.

In most P2P botnets, the process of probing for
the responsiveness of the neighbors are also coupled
with the feature to request or share the latest com-
mand from the botmaster with the neighbor. As such,
new commands from the botmaster can be (eventu-
ally) disseminated to all bots connected to the overlay
in a hop-to-hop fashion. As such, the features within
a MM mechanism enables P2P botnets to inherit self-
healing and self-organizing properties that make them
valuable to the botmasters due to the lowmaintenance
effort and operating cost [5].

2.2 Monitoring Unstructured P2P Botnets

Realizing the growing threat of P2P botnets, re-
searchers and lawenforcement agencies have actively
started monitoring botnets to enumerate infections as
well as to plan potential takedowns [6] . As a prerequi-
site to monitoring, the custom communication proto-
col of the botnets under scrutiny needs to be reverse
engineered. Along with that, the MM mechanism of
the botnet also needs to be understood before custom
tools such as crawlers and sensors can be deployed
within the botnet to monitor them [5].

Crawlers implement the neighborlist request fea-
ture of the botnet’sMMmechanism to interact with the
bots to discover the inter-connectivity between bots.
However, only superpeers may be discovered by the
crawlers. It has been reported in the literature that non-
superpeers in a botnet typically consists of 40 − 60%
of the overall population [6].

Sensors are used to increase the visibility on both
superpeers and non-superpeers in a botnet [7]. The
main task of a sensor is to reliably respond to all
incoming probing messages from the bots. After a
sensor is injected into the NL of some superpeers,
it has to wait until the information of itself being
shared by superpeers to other nodes that may request
them for their neighbors. Given enough time, the in-
formation about the sensor would be present in the
NL of most bots in the overlay. Next, when a non-
superpeer requests for neighbors, information of the
sensor would eventually be returned by a superpeer.
Subsequently, the sensor would be able to identify the
non-superpeers based on the incomingmessages, i.e.,
IP address information. The main drawback of a sen-
sor is the fact that it can only enumerate bots but can-
not obtain the inter-connectivity among them.

2.3 Network Simulators

P2P botnets are an interesting phenomenon to be
studied. However, it is not always possible to study
them in the wild, i.e., active botnets in the Internet.
Any active interactionwith the bots, e.g., testing strate-
gies of a botnet takedown attempt, may be noticed by

1We want to point out, that even though the name is generic, BSF specifically addresses P2P botnets.
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the botnet operators. Moreover, one could only study
botnets that are out there in the wild. For those bot-
nets that are no longer active or to study newer strate-
gies implemented within botnets, it would be useful to
study them in a simulation environment. Such a sim-
ulation environment would allow the evaluation of the
influence of any past, current, or future botnet’s design
decision more thoroughly.

Nevertheless, to the best of our knowledge, there
are no P2P botnet simulators that are available for this
purpose, i.e., simulation of the P2P botnet communi-
cation overlay. However, there are several generic dis-
crete event network simulators that could be leveraged
to establish such a botnet simulator.

The network simulators ns-2 [8] and ns-3 [9] sup-
port simulating various network protocols, routing al-
gorithms, and network types, e.g., wired/wireless net-
works. In addition, they also allow extending the simu-
lator with user-defined protocols and devices that pro-
vide user interface support.

In addition to the above, OMNeT++ [10] is also an-
other discrete event simulator that are widely used as
network simulators. Moreover, thanks to modularity
concept of OMNeT++, several interesting and useful
frameworks, e.g., INET2, have been developed using
OMNeT++. Simulation using OMNeT++ only needs a
configuration file to be filled up by the user before al-
lowing the simulation to take place. This configuration
file specifies the various parameters and settings that
the simulation should be instantiated and executed
with.

In the next section, we introduce our botnet simu-
lator that is developed on top of OMNeT++.

3 Botnet Simulation Framework

The open source Botnet Simulation Framework (BSF)3
is built on top of the OMNeT++ discrete event sim-
ulation framework [10]. Following the module-based
structure of OMNeT++, BSF provides a flexible and ex-
tensible simulator for P2P botnets. Among its core
features, bots can join P2P overlays, exchange mes-
sages, and experience churn behaviors, i.e., (re-)joining
and leaving the network, following realistic distribu-
tions. Moreover, BSF facilitates experimentation with
crawler and sensor nodes. Finally, several modules
can be used to export the experimental results in the
form of statistics, graph representations of the net-
work topology or a message traces.

3.1 Framework Overview

Figure 1 presents an overview of BSF and its compo-
nents. In the following, we describe the core compo-
nents in greater detail.

3.1.1 Configuration Files

As mentioned in Section 2.3, the OMNeT++ configu-
ration file is used by modules to obtain the values for
the various parameters and settings required for the
simulations. BSF also leverages this configuration file
to instantiate and provide the botnet-specific param-
eters for the simulation. This enables easy configu-
ration and changing of simulations without modifying
the code itself. Moreover, existing configuration files
can be extended to carry out another experiment with
minor changes without changing the existing config-
uration file. This in turn allows a user to carry out
as many simulations as needed with the possibility
to replicate the results with the specific configuration
files.

3.1.2 Bots

The bot modules represent the core of the simulation
framework. These modules generally extend a Node-
Basemodule, that takes care of connecting to the sim-
ulated network and handles general message forward-
ing and receiving capabilities of each bot. To imple-
ment a specific botnet protocol, one may extend the
NodeBase module, as it provides the greatest flexi-
bility at the cost of additional effort in implementing
all functionality. A quick way of implementing a bot-
net protocol is to use the provided SimpleBot mod-
ule, that is highly configurable and follows the gen-
eral concepts of unstructured P2P botnets such as
Gameover Zeus [1], Sality [2] or Hide’n Seek [3]. More
specifically, SimpleBotmaintains and updates a neigh-
borlist of knownbots, frequently checks the availability
of these bots and exchanges commands and updates
using three different message pairs commonly imple-
mented by unstructured P2P botnets.

Node IDs Each bot in BSF is assigned a unique iden-
tifier called Node ID. This identifier is used for routing
messages, computing and exporting statistics, and
addressing the nodes from global modules. In an ab-
stract sense, the Node ID is a generic replacement for
an IP address within BSF. Node IDs are assigned in a
incremental fashion to all nodes present in the simu-
lation, guaranteeing that all IDs 0 ≤ ID < totalnodes
exists. This is necessary for features such as retriev-
ing a random bootstrap peer from the global nodelist.

Neighborlists NLs are separate modules within BSF.
SimpleBot is designed to work with flexible neigh-
borlist imlementations, that can be specified at the
start of a simulation. The default implementation is
the SimpleNL neighborlist. SimpleNL stores known
bots in a map structure, mapping a bots ID to a Sim-
pleEntry object. A SimpleEntry allows to keep track of
when a bot last replied and how many requests were
unanswered. Moreover, the SimpleNL can be freely

2https://inet.omnetpp.org/
3https://github.com/tklab-tud/BSF
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Figure 1: Overview of BSF and its components

configured in size and provides several methods to re-
trieve the stored entries, such as accessing by ID or
retrieving a random entry.

Messages In its current form, SimpleBot provides six
types of messages: Ping and Pong, command request
and reply, and neighbor request and reply messages.

The purpose of the Ping and Pong messages is to
probe if a bot is still active or responsive. Furthermore,
it contains an optional version field, that can be used
to simulate and track the current version of other bots
in the botnet.

The second type of messages implemented within
SimpleBot are command request and reply messages.
These can be used to request the latest set of up-
dates or commands from another bot. In its default
setting, these messages are exchanged if a Ping Pong
exchange reveals that one of the bots has an older ver-
sion and therefore requests for the latest update using
a command-request.

The third type of messages are neighbor-requests
and neighbor-replies. These are used by bots to fill or
update their neighborlists. A neighbor-request mes-
sage is triggered, if the size of a bot’s neighborlists
falls below a configurable threshold. A bot will then
contact one of its responsive neighbors and request-
ing additional peers. The contacted neighbor will then
reply with a neighbor-reply message, that contains a
configurable subset of bots from its own neighborlist.

Membership Maintenance The last core component
of the SimpleBot implementation is its MM mecha-
nism. It is triggered at a pre-specified interval and then
iterates through all neighborlist entries, sending Ping-
messages to check if they are still online. If peers have
not replied within a certain period or have not replied
to a configurable number of requests, they will be re-
moved from the neighborlist. If the neighborlist is be-

low the configured threshold, the maintenance loop
will also actively send out neighbor-requests to try to
fill up the empty slots in the neighborlist.

3.1.3 Networking

Most research in monitoring P2P botnets is focused
on the overlay network, rather than the underlying In-
ternet infrastructure. In order to reduce complexity
and increase efficiency, BSF currently provides a sim-
ple star network topology consisting of a single router
connecting all bots. We want to point out, that BSF is
not limited to only this kind of network and one could
implement more complex networks, if required. Con-
necting to the underlying network is handled automat-
ically by the NodeBase module. Messages are routed
by a central router based on the assigned NodeIDs.
While we could theoretically establish direct connec-
tions between all bots without an intermediate router,
the intermediate router provides several desirable ben-
efits. First off, the central router observes all mes-
sages exchanged between any type of node in the net-
work. This allows us to record and export the entire
message exchange of the simulation for analysis pur-
poses. Second, one could easily implement new fea-
tures such as packet loss orman-in-the-middle attacks
on top of the default router implementation. Lastly, the
router implementation serves also as an ideal location
to introduce latency into the message exchange be-
tween bots, i.e., to simulate delays.

3.1.4 Monitoring Nodes

One of the main goals of BSF is the development and
evaluation of monitoring mechanisms in different en-
vironments. At the heart of any P2P botnet monitor-
ing operation, wewant to collect information about the
infected bots, how they are interconnected, and when
they are online. For that, BSF implements base classes
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for collecting and exporting data of typical monitor-
ing mechanisms such as crawlers and sensors. Es-
sentially, a monitoring node is just another extension
of the NodeBase module and has all the capabilities
of sending and receiving messages of regular bots.
However, thanks to the modularity and configuration
options provided by OMNeT++, monitoring nodes can
be customized widely. One example that is already im-
plemented, is a crawler for the SimpleBot botnets.

The capabilities of simulating and evaluating dif-
ferent P2P botnets and monitoring mechanisms have
already been showcased in two of our previous pub-
lications [11, 12], where we investigated the capabili-
ties ofmonitoringmechanisms against advanced anti-
monitoring mechanisms. A key advantage, even over
real world experiments, is that we can compare the
monitoring results to the ground truth extracted from
the simulator. Therefore, this provides researchers
with the unique opportunity to accurately measure the
effectiveness and drawbacks of different (proposed)
monitoring mechanisms in various settings.

3.1.5 Churn

One of the main challenges of simulation environ-
ments is to closely resemble the reality. In the case
of P2P botnet simulation, even if one re-implements
a botnet protocol to perfection, it is still necessary to
accurately model the behavior of bots. While most of
this behavior is described by the protocol, the churn
behavior is influenced by various external factors such
as diurnal patterns, network congestion or outages, IP
churn or migration of mobile devices such as phones
and laptops.

To address this issue, BSF has introduced an ad-
vanced method to recreate churn based on real world
measurements [11]. This churn generator is called Life-
timeChurn and can be freely configured using three pa-
rameters. The first parameter is the target node count
and specifies the desired population of bots being ac-
tive at any point in time. The specified value is an
average, that dynamically affects the rate of bots (re-
)joining or leaving the active population of the botnet.
The remaining two parameters are the shape and scale
of the Weibull [13] distribution specifying the lifetime
behavior of bots. We chose a Weibull distribution, as
related works on measuring churn in P2P networks
and botnets have reported good fits ofWeibull distribu-
tions on the churn behaviormeasured in the real world.
This allows us to recreate the heavy tailed distributions
of bots within BSF, i.e., many bots have shorter life-
times, whereas lesser bots have very long lifetimes.
The current default implementation uses parameters
measured for the Sality botnet in 2015 [14], but can eas-
ily be replaced in the configuration file.

While LifetimeChurn aims to recreate real world
churn behavior as close as possible, sometimes we
do not want nodes to churn at all. The most common
example is the use of monitoring nodes, that are com-
monly under our control and continuously online. For
this scenario, we have another churn generator called

NoChurn. As the name suggest nodes managed by
this churn generator are not affected by churn at all.

As it is desirable in many cases to have different
nodes affected by different or no churn behavior, BSF
allows to assign sets of nodes to specific parameter-
ized churn generators. As an example, one could use
two different LifetimeChurn instances for superpeers
and non- superpeers respectively and a third NoChurn
instance for monitoring nodes. This provides great
flexibility in modeling churn behavior within BSF.

3.1.6 Statistics and Data Export

AsOMNeT++ provides the full flexibility of the C++ pro-
gramming language, one could implement data analy-
sis features directly in BSF. However, at the current
point in time, this is only implemented to a limited de-
gree. For most purposes, we have decided to lever-
age existing tools and libraries from a broad spectrum
of programming languages, such as networkx [15],
numpy [16], scipy [17], R [18] or gephi [19]. To leverage
these existing tools, BSF implements a variety of data
exports such as, overlay graph snapshots, general and
command message traces, or monitor node data. Ta-
ble 1 provides a short overview of the available data
exports and their format.

Description Filetype

Message Trace csv
Command Trace csv
Monitor Data Matrix representation
Graph Snapshots graphviz format

Table 1: Available data export formats

While general purpose libraries for machine learn-
ing, visualization or statistics are abundant, the frame-
work provides a simple python application for visualiz-
ing differences between monitoring and ground truth
graphs in a browser. Figure 2 depicts a simple com-
parison of the entire simulated network vs the view ob-
tained by a crawler.

Moreover, we integrated functionality into ID2T to
inject botnet communication traces into real world
PCAPs, which will be described in the following sec-
tion.

4 Network Traffic Injection

While the core functionality of BSF is focused on P2P
botnet simulation from an overlay perspective, this is
insufficient for mechanisms that rely on a detailed rep-
resentation of lower network layers. To address this is-
sue, we have implemented functionality to export BSF
traces, that can be injected into any PCAP file using an
external tool called ID2T.
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Figure 2: Visualization example of BSF: Comparison of all active nodes and the information obtained by a
crawler in green.

4.1 Intrusion Detection Dataset Toolkit

The Intrusion Detection Dataset Toolkit (ID2T) [4, 20]
is a framework for creating and injecting synthetic at-
tack network traffic for the evaluation of intrusion de-
tection algorithms and systems. In particular, ID2T re-
ceives as input a network Packet Capture (PCAP) file
of arbitrary size and produces as output a new PCAP
file that includes synthetically generated and labeled
attacks. ID2T does not justmerge PCAP files with sim-
ulated attacks; rather, to produce a realistic dataset, it
analyzes the input traffic and replicates its properties
when generating attacks [20].

Furthermore, ID2T supports the injection of a mul-
titude of attacks, ranging from portscans and DDoS at-
tacks to network exploitation and botnet traffic. In ad-
dition, ID2T offers an API for the further development
of attacks.

4.2 Traffic Export and Injection

The message trace export functionality of BSF pro-
vides an accurate record of all messages exchanged
during the botnet overlay simulation, including times-
tamp, message types, source node ID and destination
node ID.We leverage this information in the implemen-
tation of the P2PBotnet attack in ID2T. In its current
implementation, the P2PBotnet attack can only inject
UDP based botnet packets. However, ID2T itself pro-
vides functionality and many other attacks using TCP
based packets. At a high level, ID2T translates mes-
sages obtained from the BSF message trace into UDP
packets. These packets are then injected into an ex-
isting PCAP. In order to do this, the P2PBotnet attack
addresses threemain tasks: 1) assigning IP addresses
to BSF IDs 2) selecting which messages to inject, and
3) creating payloads for each message type. We will
describe eachof these three steps in the following sub-
sections.

4.2.1 IP assignment

Before we describe the parameters and mechanisms
for assigning IP addresses to the BSFmessage traces,
we need to explain a differentiation of local and exter-
nal bots within ID2T. A local bot is considered to be
within the network for which a PCAP was recorded.
That means, that all traffic originating and addressed
towards that bot is visible within the PCAP. Contrary
to that, an external bot is considered to be outside
the scope of the network for which the PCAP was
recorded. Therefore, only messages addressed to or
originating from another bot within the local scope is
visible in the PCAP.

The P2PBotnet attack provides four different pa-
rameters to specify how the BSF message trace
should be injected into a given PCAP. The first pa-
rameter src.bots.count specifies how many local bots
should be injected. ID2T will then select and map that
number of BSF node IDs to real IP addresses. The
other parameters related to IP assignment are ip.reuse,
ip.reuse.local and ip.reuse.external, which specify the
percentage of IPs to be reused from the original PCAP.
As an example, specifying ip.reuse.local = 0.5 and
ip.reuse.external = 0.5 would tell ID2T to assign 50%
of both local and external bots to IP addresses al-
ready existing in the target PCAP and create new IP
addresses for the remaining injected bots. This way,
one can choose to add P2P traffic to already existing
hosts in the PCAP or introduce new hosts with attack
traffic only.

4.2.2 Message Selection

While we previously described how BSF node IDs are
mapped to real IP addresses, we still have to specify
which IDs and messages to inject. This is influenced
by two parameters interval.selection.strategy and the
attack.duration. The attack duration specifies the time
period for which the botnet traffic should be injected
into the PCAP. Additional parameters can also be used
to specify a start and end time relative to the start time
of the given PCAP. For the selection strategy, ID2T of-

6 Leon Böck, Shankar Karuppayah, Max Mühlhäuser, Emmanouil Vasilomanolakis, An Overview of the Botnet Simulation Framework



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 6, NO. 1, DEC. 2020 BOTCONF 2020 PROCEEDINGS

fers either random or optimal. While random simply
picks from the set of existing node IDs randomly, op-
timal tries to choose nodes with the highest amount
of traffic. However, selecting the optimal parameter
comes at significantly increased computation times,
to identify the node IDswith the highest traffic amount.

Once a node ID is selected to be mapped to a local
bot, its entire communication ranging the specified du-
ration, is injected into the PCAP. For either node ID se-
lection strategy, the period of highest traffic matching
the specified duration is chosen for injection.

4.2.3 Payload creation

For payload creation, the P2PBotnet attack currently
supports only random payload content representing
encrypted traffic. Therefore, the main parameter is the
length of the payload. A user can specify this using
three parameters: msg.map packet.padding and ran-
dom.padding. The msg.map defines a given length in
bytes for each message type present in the BSF trace.
Additionally, one can specify a padding length, that is
added to each injected payload. Lastly, this padding
can be defined to be random or static, i.e., a random
value between 0 and the padding length is chosen, or
the padding length is applied as is.

In Section 5 we will showcase, the described func-
tionality and how BSF and ID2T can be used together,
to recreate artificial traffic flows for a Sality botnet [2].

5 Evaluation

The aim of this section is to provide an overview of the
capabilities and use cases of BSF. While example use
cases for BSF itself can be found in previous publica-
tions [11, 12], this section provides amore generic eval-
uation of BSFs runtime performance. Furthermore, we
showcase how BSF and ID2T can be used in conjunc-
tion to mimic Sality botnet P2P communication.

5.1 Runtime Performance

In order to measure the runtime performance of BSF,
we are interested in how long it takes to simulate a bot-
net of a given size for a given simulation period. In
order to do this, we compare the simulation progress
against the runtime measured in hours. As BSF is a
discrete event simulator, simulation time progresses
as fast as the events are processed. For BSF, the num-
ber of events is heavily influenced by the amount of
messages exchanged between bots. Therefore, any
parameters influencing the amount of messages sent,
has a direct correlation to the runtime of a simulation.
Moreover, the specified time span of the simulation
and the number of bots affect the runtime of a simula-
tion. Depending on these factors, the runtime needed
to simulate a botnet for 10days can vary greatly. Within
the following subsections, we will describe three dif-

ferent simulation scenarios and evaluate their runtime
performances.

5.1.1 Experimental Setup

To evaluate the runtime performance of BSF, we
used the SimpleBot implementation with three differ-
ent sets of parameters, mimicking the unstructured
P2P botnets: Sality, Gameover Zeus and Hide’n Seek.
As mentioned previously, the runtime performance is
mostly affected by the number of bots, duration and
the amount of messages exchanged between bots.
For the SimpleBot implementation, the number ofmes-
sages is most affected by the NL-size and the MM-
interval. The larger the NL-size of each bot, the more
messages are exchanged during each MM cycle, in-
creasing the amount of messages within the simula-
tion. Similarly, the shorter the MM-interval of a bot, the
more often it will exchange messages with all bots in
its NL, again increasing the amount ofmessages in the
simulation.

For our experimental setup, we picked three bot-
nets with differing NL-size and MM-interval. Each
botnet simulation is carried out for a duration of ten
days and repeated eight times using different seeds
for each run. To showcase that BSF is able to simu-
late large networks, we adjusted the total and active
population in relation to the expected simulation load
caused by the NL-size and MM-interval parameters.
Table 2 provides an overview of the parameters used
for each botnet.

All simulations were conducted on a server with an
Intel E5-2640 v2 processor with 16 physical cores at
2.0 GHz and 64GB of DDR3 RAM at 1600MT/s.

5.1.2 Results and Discussion

The results of our evaluation are depicted in Figure 3.
Due to the large NL-size of Sality, the simulation had an
average runtime of 13.614 hours, surpassing the run-
time of the other two botnets by at least 500%. For
Gameover Zeus and HnS, the simulations have similar
runtimes of 2.352 and 2.333 hours respectively. Never-
theless, we have to point out, that the number of bots
simulated for Gameover Zeus is ten times higher than
that of Hide’n Seek. This increase in nodes at similar
runtimes is possible due to Gameover Zeus produc-
ing much less messages with its low MM interval and
small NL size.
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Mimicked Botnet Total Bots Active Bots Duration NL Size MM Interval Runs Runtime Std.

Gameover Zeus 20000 5000 10d 50 30m 8 2.352h 0.201h
Sality 5000 1250 10d 1000 40m 8 13.614h 0.507h
Hide’n Seek 2000 500 10d 116 32s 8 2.333h 0.158h

Table 2: Simulation parameters and runtime performance results.
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Figure 3: Runtime comparison of different parameter
settings within BSF

Another important observation, is that in the early
stages of the simulation, progress is much faster until
it grows linearly in the later stages of the simulation.
The main factors influencing this is the way bots join
the network within BSF. To facilitate a natural forma-
tion of the overlay network, bots join the network one
after another following the churn patterns. Therefore,
only few bots are active in the beginning of the simu-
lation, generating less messages or events to be pro-
cessed.

We hope, that these examples provided a good
overview of the size of simulations and their runtimes
within BSF. Wewant to point out oncemore, that given
sufficient computation power and time, any size of bot-
net may be simulated.

5.2 Data Injection

Within this section, we want to showcase the suitabil-
ity of injecting simulated communication traces into
a PCAP file. For that, we try to reproduce the conver-
sation statistics of a real world Sality communication
trace provided by Sebastián García as part of the Mal-
ware Capture Facility Project4.

5.2.1 Experimental Setup

For this experiment, we used a simulation configura-
tion mimicking the Sality botnet settings for Simple-
Bot and exported the communication trace of the last
five hours of the ten day simulation. In a second step,
we used ID2T to inject the communication of ten ran-
domly selected bots into a PCAP file using the op-
tion inject.empty=True to remove all packets previously
present in the PCAP. Due to the random selection of
bots and the churn behavior, some injected bots only
have limited communication for the data export pe-
riod. Therefore, in a second step, we analyzed the
PCAP and only exported all packets of the bot with
the most messages exchanged. The resulting PCAP
file contains traffic of one simulated bot consisting of
7, 841 packets over the timespan of 10, 092.904 sec-
onds and is referred to as Mimicked Sality.

To compare the simulated traffic against a real-
world trace of the Sality botnet, we use the PCAP
recording of a Sality malware from the Malware Cap-
ture Facility Project. From this we extracted a 10, 000
seconds slice of traffic to compare against our simu-
lated trace. We then used the Sality dissector module
for Wireshark5 to extract only the P2P communication
of Sality. We refer to this PCAP as Real Sality from here
onwards. To compare the mimicked and real Sality
traces, we exported theWireshark conversation statis-
tics for each PCAP and compared the average over all
conversations.

5.2.2 Results and Discussion

The results of the comparison between the mimicked
and real Sality PCAPs, are presented in Table 3. Except
for the number of conversations, all values are aver-
aged across all conversations of a respective PCAP.
The first noteworthy result is, that the real Sality has
only 621 conversations compared to 1059 for the mim-
icked Sality. As Sality has a NL-size of up to 1000 [2]
we expected the real trace to have an amount of con-
versations close to that number. Based on our inves-
tigations of the sample used by the Malware Capture
Facility Project, we found out, that the bootstrap peers
provided by the malware are only 740. Therefore, we
assume that only a limited number of peerswas active,
and the malware was not able to quickly fill up its NL
to themaximum value. Another observation is that the
average bytes and packets exchanged between two
peers is higher for the real trace compared to our mim-

4García, Sebastián. Malware Capture Facility Project. Retrieved from https://stratosphereips.org
5https://github.com/tillmannw/sality-dissector
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icked trace. We speculate that this is caused by the low
number of NL-entries for the real trace, leading to ad-
ditional NL-request messages being sent to fill up the
neighborlist. Normalizing the number of bytes by divid-
ing with the number of packets, we get similar values
for both the real and the mimicked traces, supporting
our previous assumption.

Real Sality Mimicked Sality

Conversations 621 1059
Bytes 668.29 543.94
Packets 8.768 7.404
Bytes/Packets 76.218 73.464
Duration 8443.383 9067.351
Packets A -> B 3.676 2.888
Packets B -> A 5.092 4.517
Bytes/Packets A -> B 75.035 73.91
Bytes/Packets B -> A 77.072 73.179

Table 3: Comparison of average conversation statis-
tics of a real and mimicked Sality botnet’s PCAP.

Overall, we can summarize that it is possible to
mimic the general characteristics of a P2P botnet such
as Sality using BSF and ID2T. However, the lack of the
ability to decrypt the payload may limit deep packet
inspection related applications on the artifical trace.
Nevertheless, we think that this tool can be useful to
evaluate P2P botnet detectionmechanisms or general
IDS against a wide variety of simulated P2P botnet be-
haviors.

6 Conclusion

BSF attempts to bridge a gap in P2P botnet research,
by enabling researchers and other defenders to eval-
uate monitoring mechanisms, takedown strategies
and general P2P botnet behavior in a simulation set-
ting. Among the major benefits, research can be con-
ducted without interfering with other ongoing oper-
ations, novel ideas can be evaluated against future
botnet designs, and ground truth is available to ver-
ify against any analysis or experiments. Moreover, the
ability to recreate real-world churn, provides a more
realistic environment, than traditional approaches to
simulate churn. Lastly, the ability to export the sim-
ulation data for processing in other tools makes BSF
flexible for P2P botnet research. Specifically, the inter-
operability with ID2T [4] to inject P2P botnet traffic into
existing network traffic even facilitates testing of IDSs
and botnet detection approaches.

For future work on BSF, an interesting addition
would be integrating support for structured P2P bot-
nets and other non-P2P C2 channels. Furthermore, im-
proving the existing base classes and introducing ad-
ditional monitoring nodes are planned in the near fu-
ture. Lastly, adding a more realistic underlay network
to the simulation may facilitate more accurate mes-
sage traces and recreation of payloads for injection

with ID2T.
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