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Abstract

Effective detection and identification signa-tures are an important component in the toolkitfor malware analysis. The creation of such sig-natures is still widely a manual task that re-quires notable experience and knowledge onthe side of analysts. In this paper, we presentYARA-Signator, an approach for the automatedgeneration of code-based YARA rules. Themethod is based on the isolation of instruc-tion n-grams that on the one hand appear fre-quently within a malware family and on theother hand are not found in any other family.Applying YARA-Signator to the Malpedia dataset, we show that in fact on average 51.85% ofthe instruction n-grams of length 4 and higherare only found in the respective family. Therules produced by the system using this dataset achieve an overall F1 score of 0.983 andcause only very few false positives in a sanitycheck against a large goodware data set. YARA-Signator is made available as open source anda periodically updated reference rule set is pro-vided for free through Malpedia.

1 Introduction
Malicious software (short malware) remains to pose asignificant threat to the security and integrity of com-puter systems. To effectively and rapidly triage mal-ware, analysts make frequent use of a variety of toolsand systems. A cornerstone in the initial assessmentof suspicious files are syntactic signatures that al-ready have a long-standing tradition in anti-malwareefforts. These signatures primarily enable detectionand identification of malware families, which helps to

speed up analysis procedures by making use of pre-vious knowledge for these families. One of the mostimportant and popular tools in this context is YARA.YARA is a highly efficient pattern matching engine,accompanied with a very accessible rule descriptionlanguage. This has lead to YARA becoming a quasi-standard with wide adoption among practitioners andmany rules being shared openly or in private threathunting groups.However, crafting rules that generalize well whileavoiding misclassifications still remains a challenge.This process is often carried out manually, requiringknowledge and experience on the side of the analyst.Effective rules should ideally aim for stable and char-acteristic elements ofmalware, similar to the upper re-gions in the "Pyramid of Pain" [1] when thinking aboutattackers. One way to interpret this is trying to avoidpotentially volatile or easily changed elements such asstrings and instead aim for the code itself.Previous works, e.g. by Blichmann [2] or Zaddachand Graziano [3], have already successfully demon-strated that the automated generation of code-basedrules is possible. These approaches are based on theheuristical identification of longest common subse-quences (LCS) that isolate code patterns in the formof instruction sequences that are found in all files ofthe input data. One drawback of the demonstratedapproaches is their dependence on proprietary com-ponents (such as IDA Pro) and potential limitations inscalability.In this work, we present our approach YARA-
Signator, which follows the underlying idea of the previ-ously presented approaches but transfers it to instruc-tion sequences of fixed size, so-called n-grams. Op-posite to the other works, YARA-Signator processesall malware families in a given input data set in paral-
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lel. This allows us to execute aggregation operationsthat have the following benefits. First, we can elimi-nate code sequences that are found in multiple fam-ilies, which are most likely instances of shared codeundesired to become part of signatures, e.g. libraries.Second, by counting and ranking the number of ap-pearances of n-grams in samples of the same family,we achieve an approximation of the LCS identification.We propose a prototype implementation of YARA-Signator depending only on open source componentsand apply it to Malpedia [4], a community-curated cor-pus of cleanly labeled, unpacked malware samplescovering more than 1,500 malware families. On thisdata set, the rules produced by the system achieve anoverall F1 score of 0.983with a high precision of 0.995.We additionally test the rules against a corpus contain-ing 10 TB of benign software, on which 70 out of 992rules produce a total of 13,879 false positives. Whileseemingly large, these numbers are however drasti-cally driven by very few outliers, as 10 of these rulesaccount for more than 92% of the FPs, showing thatthe rules are generally indeed very accurate.In summary, our paper makes the following contri-butions:
• We present YARA-Signator, a method for the au-tomated generation of code-based YARA signa-tures.
• Using the disassembly for 992 malware familiesfrom the data set Malpedia [4], we show that onaveragemore than 51.85%of instruction n-gramsof size 4 and larger are intrinsic for the respectivefamilies, i.e. only found in these and thus serveas good candidates for rule creation.
• We provide an open source implementation ofYARA-Signator and make a periodically updatedreference rule set for all processable familiesfound in Malpedia publicly available.
The remainder of the paper is structured as fol-lows. We first provide background information to easethe understanding of the proposed methodology anddiscuss relatedwork to give a thematic overview of thetopic. We then introduce our approach YARA-Signatorand explain the workflow and components of the sys-tem. Afterwards, we examine the general viability ofthe method by providing a detailed statistical evalua-tion of the data set. This is followed by an evaluationof the classification performance of the rules gener-ated using this data set and a false positive analysisagainst a large goodware corpus. We conclude with adiscussion of limitations and future work.

2 Background
In this section, we discuss a number of aspects rel-evant for the understanding of the method proposedin this paper. We first discuss pattern matching andYARA in particular, before giving a short overview

of the Intel instruction syntax and the concept of n-grams.

2.1 Pattern Matching and YARA
Patternmatching is a popularmethodology that is alsowidely adapted in the context of threat detection, e.g.when monitoring network traffic or scanning files formalicious content. It typically uses a signature thatconsists of one or more known patterns associatedwith a threat to be evaluated against data of interest.In this regard, it is also used to detect or identify mali-cious software.Apart from ClamAV [5], YARA [6] has become thede-facto standard for pattern matching in malwareanalysis. Its syntax is simple yet powerful, whichmakes it very popular among practitioners. As a re-sult, there are many resources available where detec-tion and identification signatures using the YARA for-mat are shared.Figure 1 shows an excerpt of a YARA signature.This particular signature is also an example of the au-tomatically generated rules produced by the approachproposed in this paper: YARA-Signator.All YARA signatures contain at least one manda-tory part. A condition that describes what is neces-sary to trigger a detection when using this rule. Thisis a logical expression that can optionally address filemeta data or content (e.g. filesize as shown in Fig-ure 1) but will typically reference sequences defined inthe strings environment. These strings can be de-fined as printable character sequence, i.e. text string,as hex string, or as regular expression. Optional key-words canmodify the condition under which they eval-uate as a match, e.g. ascii or wide for text strings,controlling the encoding for which the strings are de-fined. A third environment is also possible for YARAsignatures: a collection of meta fields. These allow toannotate a signature with additional information, suchas author names, creation date, or sharing restrictions.

2.2 Intel Instruction Syntax
Intel x86/x64 machine code instructions [7] are vari-able in length between 1 and 15 bytes and structurallyencoded as a sequence of 6 fields:
Legacy Instruction Prefix: An instruction may be pre-fixed with zero to four instruction behavior modifiers,indicating exclusive use of shared memory (LOCK),conditional instruction repetition (REP), as well assegment, operand size, and address size overrideswitches.
(Prefixed) Opcode: The core of the instruction is a 1-to 3-byte field that defines the actual opcode (cf. Fig-ure 6, which gives a visual overview for all 1-byte op-codes in x86). Under certain circumstances, the op-code can optionally be prefixed, e.g. with a REX prefixwhen operating under 64-bit andwanting to access ex-tended registers such as R8 to R15.
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rule win_citadel_auto {

   meta:
       author = "Felix Bilstein - yara-signator at cocacoding dot com"
       malpedia_reference = "https://malpedia.caad.fkie.fraunhofer.de/details/win.citadel"
       malpedia_license = "CC BY-NC-SA 4.0"
       malpedia_sharing = "TLP:WHITE"

   strings:
       $sequence_0 = { 3bfe 7449 ff7508 e8???????? }
           // n = 4, score = 3500
           //   3bfe                 | cmp                 edi, esi
           //   7449                 | je                  0x4b
           //   ff7508               | push                dword ptr [ebp + 8]
           //   e8????????           |                     

       [...]

       $sequence_9 = { 8b0c0e 43 8901 8b470c 8bf3 }
           // n = 5, score = 3500
           //   8b0c0e               | mov                 ecx, dword ptr [esi + ecx]
           //   43                   | inc                 ebx
           //   8901                 | mov                 dword ptr [ecx], eax
           //   8b470c               | mov                 eax, dword ptr [edi + 0xc]
           //   8bf3                 | mov                 esi, ebx

   condition:
       7 of them and filesize < 1236992
}

Figure 1: Example for a YARA signature targeting the malware family Citadel, automatically generated using YARA-Signator.

ModR/M: A field that is required for some opcodes.If present, it encodes an extension, which defineswhich concrete registers or memory addressingmodeshould be used.
Scale, Index, and Base (SIB): Another field only re-quired for some opcodes. If present, it will describehow exactly addresses are calculated and how the dis-placement may be used in this context.
Displacement: The displacement is a field containinga value of 1, 2, 4, or 8 byte length that is used as anoffset for the calculation defined by the SIB field (ifpresent). In case the displacement has a length of 8bytes, no immediate may follow.
Immediate: Some instructions may use an immediatevalue, which can be 1, 2, 4, or 8 byte long, dependingon what is defined by the instruction or ModR/M field.Similarly, an 8-byte long immediate is mutually exclu-sive with a displacement.In the context of this paper, the Displacement andImmediate fields are of special interest. Because bothfields may contain concrete addresses and offsetsthat are very specific to a given compiled program or aresult of mapping and memory relocations, it is desir-able to replace these concrete values with wildcards incertain cases to achieve signatures with better gener-alization. Figures 1 and 2 give an example of wildcard-ing in the context of YARA, in both cases removing theconcrete value for a interprocedural, relative-offset callinstruction.
2.3 N-gram Structure
N-grams are consecutive subsequences with a fixedlength taken from a given sequence of items. The use

of n-grams in the context of detection or identificationis a common technique in the field of malware analy-sis. [8]For code-based signatures, the interpretation ofitems could either mean taking a set number of bytesor instructions, which themselves usually consist ofmultiple bytes. In our case, we use instructions andFigure 2 provides an example for the derivation of n-grams given a stream of instructions.There is a list of instructions given on the left handside in Figure 2. These instructions are sequentiallyexecuted by the target architecture and therefore wehave to keep this order. For a given length (four inthis case), we derive four possible n-grams from theinstruction list of length seven.

3 Related Work
In this section we provide an overview of related work.We focus on three categories: Frameworks for au-tonomous rule generation, tools supporting manualcreation of rules, and YARA rule archives.With regard to full systems for rule generation,Blichmann recently publishedVxSig [9], a reference im-plementation for the seminal approach published inhis diploma thesis [2]. VxSig allows the automatedgeneration of signatures in the YARA and ClamAV for-mat from sets of previously grouped, similar bina-ries. Input files are processed using BinExport [10] andBinDiff [10] to locate and isolate common code frag-ments. BASS [3] is a framework published by Zaddachand Graziano for the automated generation of ClamAVsignatures over previously identifiedmalware clusters.As noted by the authors, their method has strong sim-
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Figure 2: N-gram derivation from a given sequence of x86 instructions to 4-grams.

ilarities to Blichmann’s approach [2] but aims for highscalability and additionally includes a method for fil-tering out code sequences from known goodware, us-ing Kam1n0 [11]. Roth published yarGen [12], a toolthat enables the automated generation of YARA rulesbased on one or more input files. It can process bothstrings and code and can optionally include blacklistinformation from databases, e.g. to further enhancethe rule creation procedure by removing all strings thatalso appear in known goodware. Doman publishedYaBin [13], a tool that creates YARA signatures fromcode sequences that are automatically extracted fromits input programs. The concept of YaBin is based on aheuristic search for common function prologues, e.g."55 8B EC" (push ebp; mov ebp, esp) and discrimi-nation against a whitelist of sequences from a collec-tion of non-malicious software (about 100 GB in size).Heuristics for prologues cover the compilers MS Vi-sual C, Borland, and MinGW.
The following projects aim at improving the work-flow for manual creation of YARA rules. Yi publishedHyara [14], a plugin for IDA Pro and BinaryNinja thatallows to highlight code regions and strings that canthen be quickly turned into YARA rules. KoreLogic pub-lished pat2yara [15], a helper script that allows to con-vert rule files generated using IDA Pro’s FLAIR engineinto YARA rules. Ballenthin created "YARA-FN" [16], ascript for IDA Pro that creates a YARA rules from all ba-sic blocks of the currently shown function that is alsocapable of wildcarding relocations and jump instruc-tions.
Multiple notable public collections of YARA rulesexist. The YaraRules Project provides a large collec-tion of community-collected YARA rules that is man-aged as a Github repository [17]. Roth provides an ex-tensive and frequently updated set of free YARA rulescalled "signature-base" [18], which is the default ruleset used by his free scanning tools. Worth offers acurated collection of YARA rules called "Open-Source-YARA-rules" [19] sorted by their creator, covering 126entities with 1,711 rules. Wesson provides a set ofrules via "Project Icewater" [20], which produces rulesthat are automatically derived basedon clustering oversimilarity.

4 YARA-Signator
In this section we introduce YARA-Signator, our frame-work for the automated generation of code-basedYARA rules. The framework is supposed to generateYARA signatures based on a given set of disassemblyreports by processing them in multiple steps that weexplain in this section. We start by providing a gen-eral overview of the approach in Section 4.1 and thenpresent each of the processing steps of our frameworkin more detail in Section 4.2. The structural details ofthe implementation, i.e. its components and depen-dencies, are discussed in Section 4.3.
4.1 Approach
Our approach can be summarized as the task to iden-tify fragments of code that are found only in represen-tatives of the same malware family, while being ab-sent in all others. These specific fragments by defi-nition are characteristic for the respective family andthus should serve as good components for a detec-tion signature. Since malware has to be consideredsimply a special category of software we assume thatunderlying development processes are very similar orcomparable to the processes used for regular soft-ware. This means that we generally expect most soft-ware projects to have a somewhat stable code basethat usually does not change too drastically betweenits versions. We can furthermore take advantage ofthis assumption by preferably selecting the code frag-ments that appear in asmany versions of the family aspossible, which can be seen as a sign for their signifi-cance. In consequence, we expect that combinationsof such fragments will yield reliable YARA signatureswith good potential for generalization.Since YARA signatures can consist of strings, bytesequences, and regular expressions, we choose bytesequences as they are best suited to represent codefragments. Because code is naturally structured in(machine) instructions, we assume that start and endmarkers of common code fragments will potentiallyfall together with instruction borders.To avoid having to find common code fragmentsof maximum length (cp. Blichmann [2]), we instead
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decide to work on n-grams of instructions. These n-grams are derived from disassembly reports, whichserve as the input data format. All n-grams for onefamily are aggregated into a common pool. Given kmalware families, the resulting task of isolating thecharacteristic code fragments essentially can be un-derstood as a set operation in which for each of thefamily’s n-gram pools all n-grams of the k − 1 otherfamilies are removed. Figure 3 illustrates this part ofthe approach. Following this procedure, the remain-ing n-grams in each pool are ranked and a selection ofcandidates is composed into YARA signatures whichare then optimized for coverage.

removed

Family A
N-gram Pool

Family B
N-gram Pool Family C

N-gram Pool

Family D
N-gram Pool

Figure 3: N-gram filtering.

Overall, the procedure to automatically producecode-based YARA signatures can be seen as a work-flow consisting of four stages:
1. Data ingestion
2. Unification and Filtering
3. Rule Generation
4. Iterative Improvement
During the first step, data ingestion, all reportsare parsed by framework and linearized into n-grams.These n-grams are unified and filtered by performingdata aggregations. The goal is to find n-gram candi-dates with a high coverage for a given malware familythat are not overlapping with the code of other fami-lies. On the basis of these candidates we apply sev-eral filters to find the most suitable candidates. Thesecandidates are written into YARA signatures which areevaluated. Then, we iteratively improve the gener-ated YARA signatures by re-validating them in everystep, potentially increasing their precision and cover-age. These stages are explained in detail in the follow-ing section.

4.2 System Details

In this section we present the different stages of ourapproach in detail. Figure 4 illustrates the four primarystages of our framework.

1) Parsing

2) Linearization

3) N-gram Generation

4) Wildcarding

5) Filtering Step

6) Ranking System

7) Overlapping N-gram Detector

8) YARA rule composer

9) Validator

10) Iterative Improvement
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c) Overlapping N-gram Detector
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Figure 4: YARA-Signator and its processing steps.
Data Ingestion is the first phase of our approach.We process given disassembly reports for a set ofmalware samples that we want to create YARA sig-natures for. The malware samples have to be un-packed and pre-clustered beforehand, so that samplesare grouped with their respective family. Disassem-bly reports are parsed and instruction n-grams are ex-tracted.The second phase operates on the normalized datathat we created in the first phase. We filter all dupli-cate n-grams between families and rank candidatesfor each malware family. Overlapping n-grams are re-moved to sanitize the candidate pools for each family.A first set of YARA signatures are created withinthe third phase of our approach. After composing theYARA rules, we validate them against the input corpusto evaluate the quality of the generated signatures.The last phase is an iterative improvement phasewhere problematic YARA signatures are re-generatedand re-evaluated to provide an improvement of the dif-ferent previously created signatures over time.

4.2.1 Data Ingestion

Parser. As an initial step, disassembly has to beparsed. We use SMDA [21] as for this, because it isan open-source recursive disassembler built on top of
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Capstone [22]. It is convenient to use, producing JSONfiles as output and has the capability to reliably recon-struct and extract code from memory dumps. Notethat the approach (and the implementation) is gener-ally independent from the choice of disassembler asit could be trivially adapted to any other data input for-mat.
Linearization. An advanced disassemblerwill producefully reconstructedCFGs that divide the identified codeinto functions. Because YARA operates on byte se-quences, we need to flatten the Control Flow Graphinto a linear sequence of instructions that resembleshow code is encountered in the binary. Using addressoffsets and the individual instructions’ sizes, we canfurthermore split the linearized stream into consecu-tive chunks whenever a gap is encountered.
N-gram Generation. In this step, we produce the datapoints YARA-Signator actually operates on. We de-rive all possible n-grams of a pre-defined size from thechunks resulting from Linearization. In the context ofthis work, we use sizes of 4 to 7 instructions per n-gram based on previous findings [23].
Wildcarding. Code may generally contain absolutevirtual addresses or offsets, like memory pointers tocode or data. These may even be shifted due to relo-cations while mapping a binary. Using sequences withthese absolute values in place for signature genera-tion could lead to false negatives. To avoid this, weperform additional abstraction and wildcard all occur-rences of such pointers using absolute addresses. Infact, we even wildcard all relative references pointingoutside the scope of the functionwe generate n-gramsfor as well, e.g. inter-procedural calls and jumps. Addi-tionally, we also wildcard immediate values that couldbe interpreted as addresses within the mapping of thegiven binary when mapped. For this, we inspect theDisplacement and Immediate fields of all instructions(cf. Section 2.2). This procedure is equivalent to thewildcarding applied by Cohen and Havrilla [24] for theirtechnique of creating position-independent code (PIC)hashes of functions. We expect this to additionallybenefit rule generation as it may help make signaturesmore robust against code reording that can happendue to an author’s refactoring or compiler effects.
4.2.2 Unification and Filtering

Filtering Step. This step implements the actual idea,as initially described in the beginning of Section 4.1.By aggregating identical n-grams across all ingestedsamples and families, we can filter out all n-grams thatoccur in more than one family. While doing so, weadditionally track in how many different samples thefamily-unique n-grams occur as this will help identify-ing representative n-grams in the next stages. All re-maining n-grams are considered potential candidaten-grams for rule generation.
Ranking System. We developed the ranking systemto allow flexible configuration by the user. It consistsof individual ranking functions that generate a score

for a given n-gram. Multiple ranking functions canbe chained to incorporate multiple semantics into theoverall rating of an n-gram. Example metrics used forranking in our reference implementation are the num-ber of occurrences in different samples and the typesof instruction (e.g. memory-access, or logic/arith-metic) found in the n-gram. After the ranking, a selec-tion of highest-ranked candidates is selected per fam-ily (in our configuration, 10).
Overlapping N-gram Detector. When n-grams are ag-gregated across samples, the information about therelative position of n-grams to each other is lost. AsRanking is applied for individual n-grams in a proce-dure not considering other n-grams, it may rank sev-eral n-grams similarly well due to characteristics theyshare. This may potentially be a result of them over-lapping or even being contained within each other,e.g. ABCDEF and ABCD or ABCDEF and CDEFGH (witheach letter representing an instruction at a certain off-set). As it may be favorable to have signature contentsbeing spread over the target or at least not being re-dundant, this stage ensures that no excessive over-lapping exists between n-grams selected for the sig-natures.
4.2.3 Rule Generation

YARA Rule Composer. Given a collection of n-grams,this step uses a rule template to construct a functionalYARA rule, updating meta data information such as adate and input data used. In theworkflow of the frame-work, the n-gram candidates per family are used tocompose a rule. We also include a filesize cap for eachfamily’s rule that is calculated as twice the size of thebiggest input sample.
Validator. The Validator performs an evaluation of allrules created against the data they were generatedfrom. The desired result is obviously full coveragewithno false positives. However, since rules are only de-rived from parts of the input binaries (disassembledcode), false positives may still occur. Due to the initialselection of n-grams, false negatives may also occur.The resulting evaluation report is used to trigger an It-erative Improvement phase that is applied to all rulesthat do not have full coverage without false positivesyet.
4.2.4 Iterative Improvement

The Iterative Improvement aims at optimizing theYARA signatures through additional rounds of refine-ment. Every iteration can be controlled independentlyby using a different configuration for each cycle. Oneiteration cycle has five different steps: Ranking, Cover-age Engine, Overlapping N-gram Detector, YARA RuleComposer, and Validator. All steps are similar to theirequivalent described before, except that the Rankingstep can be configured for each iteration indepen-dently and additionally Coverage Engine is executed.
6 Felix Bilstein, Daniel Plohmann. YARA-Signator: Automated Generation of Code-based YARA Rules
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YARA

Figure 5: YARA-Signator and its components: The two JAVA libraries smda-reader and java2yara, its bindings toPostgreSQL,to the Capstone disassembly engine and YARA.

Information about false positives is used to black-list n-grams from their use in rules. The Coverage En-gine is then applied to all rules that did not have opti-mal coverage yet. Given the information about whichn-grams cover which samples, the problem of achiev-ing a minimal coverage of all samples is an instanceof the Set Cover problem [25] and in theory NP-hard.We use a greedy approximation [25] that performs inpolynomial time and exceeds the optimal solution byno more than the nth harmonic number in ratio. Thissuffices for our use case aswe look at a fewhundred n-grams as input at most (example harmonic numbers:
H(100) = 5.19, H(1000) = 7.49). The algorithm it-eratively selects an n-gram that achieves the highestcoverage gain, i.e. covering additional uncovered sam-ples, until all samples are covered. The Overlapping n-gram Detector again ensures that the coverage is ad-ditionally spread over the code. Validation rounds areused to update the blacklist with potential iteration un-til a satisfying result in rule output is achieved.
4.3 Implementation
We now discuss the implementation of our approach.We created a framework around our core tool YARA-Signator to provide a full toolchain enabling automatedgeneration of YARA signatures. Figure 5 illustrates thecore and relationship of the different modules.We implemented the library smda-reader as ameans for ingesting disassembly reports generatedusing SMDA [21] as described in Section 4.2.1. Tech-nically, smda-reader parses the reports provided inJSON into Java objects. As of now, we only supportSMDA as a disassembler but since the data ingestionis handled through an interface and normalized ob-jects, we are not limited to a single technology with ourapproach. An adaption of other third-party softwarelike IDA Pro or objdump as an input provider would betrivial.Because processing the disassembly for rule gen-eration requires space and we want a performant pro-cedure, we decided to use a database as backend.Given several databases to choose from, we decided

to use the relational database PostgreSQL [26]. Thisdatabase management system natively supports var-ious techniques that can be used to efficiently imple-ment our approach. This includes aggregations for fil-tering data and a range of performance tuning tech-niques such as indexing and partitioning. We sim-ply implemented a wrapper to communicate with thedatabase driver to access and persist data.Since we create YARA signatures we needed a li-brary to build YARA rules from JAVA programs. Weimplemented java2yara as a library with which signa-tures can be created from a collection of strings andgiven meta data. As we want to enrich the rules withadditional information about the instructions used inthe signature strings, we also need a disassembler.Again, having different options to choose from, wewent with capstone [22] because it is open-source andalso the basis for SMDA.Finally, for the validation of the YARA rules we useYARA itself as an external program. The results areparsed from its output and processed by our frame-work. The scan reports generated this way are usedto evaluate the rules against the input data set and animportant element to steer the iterative improvementprocess.

5 Statistical Analysis
Before we conduct a performance evaluation of therules produced by YARA-Signator, we first want to get abetter understanding for the general viability of signa-ture generation approaches based on code n-grams.For this reason, we perform a statistical analysis of theprimary data set used in this study: "Malpedia" [4].After a short introduction of the data set, we willexamine different distributions, e.g. amounts of codefound in malware families as well as the individual in-structions in the corresponding disassembly reports.We then continue by further analyzing n-gram distribu-tions and uniqueness, which we obtain as an interme-diate result in the procedure of applying YARA-Signatoron the data set.
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5.1 Data Set
Given the design of the approach as described in sec-tion 4, we note that one requirement is that the files ofthe input data have to be grouped already, e.g. by mal-ware families. A data set that is well suited to test ourapproach on is the Malpedia [4] corpus, a community-curatedmalware corpus of (unpacked) reference sam-ples including public analysis references for as manyfamilies as possible. In this study, we use Git commit
d9bc781 from February 25th, 2020 as a baseline snap-shot. At this time, Malpedia consists of 4,469 samplesfor 1,573 malware families, which accumulate to a to-tal of 8,939 files.Not all of the files found in Malpedia can be pro-cessed by YARA-Signator. Because the framework cur-rently operates on x86/x64 exclusively and we intendto only process unpacked or dumped files, we need tofilter the data set beforewe disassemble the files. Thisreduces our input data to 3,313 processable samplesfrom 1,150 families.Among these are still families that consist of non-native code because they are written in other program-ming languages, e.g. those created using the .NETframework. Filtering out all files that do not fulfil thenative-code requirements, we now use the SMDA dis-assembler [21] to process the input files. Ultimately,this leaves us with disassembly reports for 3,039 sam-ples from 1,022 families. These amount to a totalof 4,150 input files because sometimes more thanone unpacked or dumped representation is associatedwith one sample, e.g. because of a 32bit and 64bit pay-load, or additional modules.

Per Family Files Functions Instructions
Minimum 1 1 225% 1 138 7,08750% 2 412 20,92375% 3 1,135 52,133Maximum 121 18,213 931,948Total 4,150 3,733,355 195,422,329

Table 1: Statistics for the processed input data. Functionsand Instructions have been averaged per family before ag-gregation.

5.2 Disassembly Overview
In this section, we provide a characterization of the dis-assembled data in general.We first address bitness. Out of the 4,150 files,91.78% are 32bit and 38.22% are 64bit. With respectto families, we find that 97 feature 64bit code only, and74 have code both in 32bit and 64bit, while the 826 re-maining families are 32bit only.In total, SMDA identifies 3,733,355 functions with195,422,329 instructions in the used portion of thedata set. Table 1 provides further insight into how thefunctions and instructions are distributed across thesamples in the families. Interestingly, these numbersare very much in line with our earlier reports aboutthese statistics [23]. We note that the prototypical

function has about 8-10 basic blocks and consists ofround about 50 instructions, which is fully sufficient toapply our proposed method on.We now use the wildcarding method by Cohen andHavrilla [24] as explained in Section 4.2.1. This al-lows us to determine position-independent code (PIC)hashes for all functions. In our implementation, weuse MD5 over the concatenation of all wildcarded in-structions in their hexbyte representation, sorted byaddress. This leaves us with 947,421 unique hashesfor functions, out of which 848,783 (89.59%) only ap-pear in one family each. Our number is higher thanthe 81% reported by Cohen and Havrilla but likely ex-plained by their more diverse data set for which wewould expect a wider presence of library code. In anycase, this is a positive result as it indicates that we candefinitely expect to find significant amounts of codebeing unique per malware family which will benefit thegeneration of rules.
Mnem 32bit 64bit

1 mov 49,890,410 (28.17%) 6,144,638 (39.76%)2 push 26,770,256 (15.12%) 274,490 (1.78%)3 call 14,704,502 (8.30%) 1,347,419 (8.72%)4 pop 8,548,750 (4.83%) 273,385 (1.77%)5 cmp 8,060,341 (4.55%) 770,526 (4.99%)6 lea 7,570,190 (4.27%) 1,147,978 (7.43%)7 add 6,580,883 (3.72%) 557,804 (3.61%)8 je 6,371,325 (3.60%) 581,553 (3.76%)9 dec 6,064,865 (3.42%) 41,810 (0.27%)10 test 5,711,807 (3.23%) 585,390 (3.79%)11 jmp 5,184,997 (2.93%) 541,978 (3.51%)12 xor 4,934,907 (2.79%) 618,684 (4.00%)13 jne 4,525,392 (2.55%) 437,352 (2.83%)14 ret 3,481,393 (1.97%) 246,005 (1.59%)15 inc 2,595,499 (1.47%) 109,312 (0.71%)16 sub 2,485,040 (1.40%) 322,980 (2.09%)17 and 1,863,284 (1.05%) 196,456 (1.27%)18 movzx 1,577,742 (0.89%) 216,612 (1.40%)19 or 1,352,995 (0.76%) 112,826 (0.73%)20 shr 667,087 (0.38%) 69,654 (0.45%)21 jb 616,242 (0.35%) 58,695 (0.38%)22 shl 571,271 (0.32%) 59,692 (0.39%)23 nop 557,776 (0.31%) 57,045 (0.37%)24 jle 471,338 (0.27%) 40,606 (0.26%)25 jl 461,572 (0.26%) 33,305 (0.22%)
Total 171,619,864 (96,91%) 14,846,195 (96.30%)

Table 2: The 25 most prominent instruction mnemonics for32bit and 64bit.

5.3 Instruction Occurrence Frequencies
We now have a closer look at the individual instruc-tions contained in the disassembly reports. Looking atthe 25 most popular instructions mnemonics (cf. Ta-ble 2), we can see that they aready account for morethan 96% of all mnemonics. We further notice signifi-cant differences for a number of mnemonics between32bit and 64bit. First, for 64bit, mov instructions areabout 10% more frequent. At the same time, the stackoperations push and pop together reach only 3.5%, op-posed to 20% for 32bit. A primary reason for this isthat 64bit function calls are often carried out using the__fastcall calling convention, passing arguments viaregisters instead of using the stack.Similarly, inc and dec are found way less oftenfor 64bit code. While we did not investigate this in-
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Figure 6: First byte occurrence distribution among the 195,422,329 instructions, separated by bitness. A major differenceis the increased used of 0x40-0x4F bytes in 64bit (REX prefix), and reduced use of stack operations.

depth, we believe that this is connected to instructionsstarting with 0x40-4F (inc/dec <register> under
32bit) being repurposed as REX prefix under Intelx64 [7]. We have also rendered heatmaps of the firstbyte instruction distribution in Figure 6, along witha reference for 32bit instructions and their semanticcontext.
5.4 N-gram Occurrence Frequencies
After the examination of distribution properties for in-dividual instructions, we now look at sequences of in-structions, i.e. n-grams, as used by YARA-Signator. Weare interested in two statistics particularly: Unique-ness of n-grams across families overall and with re-spect to the families they originate from. Both of thesevalues provide insight in the general viability of our out-lined approach.

occurrences N-gram size4 5 6 7
1 84.94% 86.51% 87.47% 88.10%2 7.70% 7.09% 6.68% 6.34%3 3.06% 2.73% 2.53% 2.39%4 1.22% 1.05% 0.96% 0.46%

Table 3: Occurrence counts of n-grams in different malwarefamilies.
First, we look at the occurrence frequency of n-gram uniqueness across families. The results arelisted in Table 3. We count a total of 187,800,586unique n-grams for all lengths combined. With regardto their relative uniqueness, we see that even for in-struction n-grams of length 4, already 84.94% of thesen-grams appear only in a single family. For two andthree families, we note a steep decline with 7.70% and3.06% respectively, summing up to 95% of all n-grams.Expectedly, for longer n-grams, these numbers leaneven more towards an occurrence of one time acrossall families only. For n-grams of length 7, the 88.10%of family-unique n-grams are also very close to the ob-served 89.59% for family-unique PIC function hashesas discussed in Section 5.2. Overall, these statisticsare good news as they imply that a vast majority of

n-grams can be used for signatures without causingfalse positives on the data set. However, we do notknow yet how these unique n-grams are distributedacross families.
Per Family 4 5 6 7
Minimum 0.00% 0.00% 0.00% 0.00%25% 20.68% 23.60% 25.53% 26.77%50% 45.21% 51.11% 53.61% 55.88%75% 68.68% 78.78% 83.97% 87.24%Maximum 100.00% 100.00% 100.00% 100.00%Average 45.86% 51.15% 54.23% 56.14%

Table 4: Relative amount of unique n-grams per family.
Therefore, we now inspect the percentage offamily-unique n-grams for all families. The results areshown in Table 4. For a total of 5 families (with onesample each), YARA-Signator did not identify uniquen-grams. An inspection of these shows that 4 sam-ples were misclassified in Malpedia because of differ-ent aliases referring to them in the referenced report-ing, while one family was a .NET sample that was notfiltered before. For each of the remaining 992 families,a number of n-grams sufficient for rule generation isfound. Not only this, for the median family, between45.21 and 55.88% of n-grams are unique to that fam-ily depending on n-gram length. Similar to what wasobserved before, longer n-grams lead to higher rela-tive uniqueness. Overall, we find that basically everyfamily contains some portions of unique code that canbe automatically identified and used to target it in asignature. The average percentage of unique n-gramsacross all n-gram lengths and families is 51.85%.Deeper investigation of the results allows usto make more interesting observations. For ex-ample, families that stick out with a high n-grambut low unique n-gram count are for example

win.combojack [27] (520,891 n-grams total but 2.40%unique) and win.shurl0ckr [28] (1,441,625 n-gramsbut 3.25% unique). Both are compiled with frame-works that make use of excessive static linking, inthese cases Delphi and Go respectively.In a few cases, we observe a similar phenomenonfor families compiled with the much more popu-
Felix Bilstein, Daniel Plohmann. YARA-Signator: Automated Generation of Code-based YARA Rules 9
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lar MS Visual Studio. Here, we find families thathave a lower number of total n-grams but still a lownumber of unique n-grams. An example would be
win.carrotbat [29], a simple downloader used by athreat actor in campaigns targeting Southeast Asia.For this family we count 40,295 n-grams among which6.5% are considered unique.On the other end of the spectrum, we can findfamilies such as win.locky [30] and win.nymaim [31].These families employ custom obfuscation schemesthat lead to a high n-gram count out of which the vastmajority is also unique. For example, in win.nymaimwefind 2,335,906 n-grams out of which 99% are uniqueacross all families.

6 Evaluation

In this section we present the results of our evaluationof the generated YARA signatures. We first explain thedata sets used and then describe the rule generationprocess and structure of produced rules. Afterwards,we discuss the experiments to measure classificationperformance.
Phase Time in hours
Disassembly 2Data Ingestion 8Filtering 2Initial Rule Generation 2Iterative Optimization 1
Total 15
Table 5: Duration of a full run of YARA-Signator.

6.1 Data Set

In the evaluation, we use the same data set as de-scribed in Section 5.1: a snapshot of Malpedia (com-mit: d9bc781) [4].However, since previous works [4] showed that al-most 80% of the analyzed 443 malware families forWindows in that study had been created using VisualStudio, we take this into concern for blacklisting. Forthis purpose, we use the data provided by the EmptyMSVC Project [32]. As the name implies, this projectcontains empty projects compiled with all availableversions of MS Visual C in all major compiler settings(dynamic and static linking, debug and release builds).This way, the resulting programs contain only codethat we would expect to be inserted by Visual Studio,which is likely shared and should not become part ofYARA signatures. We also add a number of goodwarethat we identified being prone to false positives in pre-vious experiments, among themMFC libraries and net-work libraries from Internet Explorer and Firefox.To further test the robustness of the rules pro-duced by YARA-Signator with regard to FPs on benignsoftware, AVAST kindly ran our rules against their cor-pus containing 10 TB of goodware.

SeqCount N-gramLen SeqLen SizeCap
Minimum 5 4 4 24,57625% 10 5 14 188,41650% 10 6 18 402,43275% 10 7 23 1,040,384Maximum 220 7 77 35,323,904

Table 6: Statistics that describe the characteristics of theoutput rules. SeqLen and SizeCap in bytes.

6.2 Rule Generation

For rule generation, we use a system with the follow-ing specifications: Intel I7 with 32GB RAM, an SSD assystem and a HDD to host the data partition. With re-spect to the different processing phases described inSection 4.2, we note the processing times as shown inTable 5, taking about 15 hours for the full procedure.
The outcome of this procedure is a rule set for 992of 997 families thatwe used as input. For 5 families, nounique n-grams could be identified and thus no ruleswere generated. We now further characterize theserules, a summary is given in Table 6.
First, we inspect the number of sequences usedperrule. Only the rule for win.poisonivy consists of 5 se-quences (all others have 8 or more) and the largestis win.isfb with 220 sequences that originate from121 input files. In fact 763 (78.23%) have exactly 10 se-quences, which is a result of the configuration chosenin Section 4.2.2 and the fact that 482 families from theinput data are only represented by a single file. The to-tal number of sequences is 12,542, out of which 6,430(51.27%) contain one or more wildcards.
With regard to the distribution of n-gram lengthswithin these sequences, we can see that they areskewed towards longer sequences and there are infact 5,028 n-grams with 7 instructions, which are40.01% of all sequences. This is primarily caused bythe Overlapping Detection, which discards shorter n-grams in favor of longer n-grams containing them. Alln-grams combined contain 72,954 instructions, out ofwhich 10,004 (13.71%) are wildcarded.
For sequence lengths (SeqLen), we notice that halfthe sequences are between 14 and 23 bytes. Raff etal. [33] recently showed in a study on code reuse iden-tificationwith large n-grams of up to 1024 bytes length,that shorter n-grams of n < 32 generally provided bet-ter accuracy.
Finally, we look at the values used to cap file sizesas explained in Section 4.2.3. As this value is twiceas large as the largest input file per family, we notea range from 24 KB up to 35 MB. The smallest filesare very simple downloaders that only consist of a fewfunctions while the largest is win.rms, a remote ad-ministration toolkit that was observed being used intargeted intrusions by threat actor TA505.
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True False
Positive 4,035 22Negative 3,459 115

Table 7: Classification results of running the 992 YARA rulesagainst the input data set. In addition to the 4,035 True Posi-tives, another 1330 hits on files of the respective family wereregistered.

6.3 Classification Performance
After inspection of the generated rules, we now wantto evaluate their performance with regard to detectioncapabilities.We first apply the rules against the Malpedia dataset with which they were generated. The results areshown in Table 7. Overall, all except 115 files were pos-itively classified, which results in a Recall of 0.972. In-terestingly, 1,329 additional files were correctly classi-fied by the respective rule corresponding to their fam-ily, which indicates the generalization potential of theused n-gram and wildcarding method. With just 22false positives, the rules have a very high Precision of0.995. The overall F1 score is 0.983.Looking closer at the rules, we find that 977 rulesdid not produce false positives and 923 rules did nothave any false negatives. Combined, 916 rules are con-sidered clean in that they did not cause any misclassi-fications.We next investigate these misclassifications in de-tail. First off, false positives typically have to be con-sidered as a direct result of disassembly errors. If alldisassembly was exact, the sequences causing FPswould have been sorted out during the aggregationand filtering stage. The following scenarios can occur.First, if code is disassembled correctly in one familybut missed in another, this may result in n-grams thatlead to false positives. Otherwise, if disassembly isproduced "wrongly" for a family, thismay lead towronginstruction borders and thus n-grams that will still de-tect the same byte sequences in other families.With this in mind, we now first focus on thefalse positives that occurred. For at least 9 outof 22 hits, we assess that they are caused by ac-tual contextual relationship between the families.For example, the YARA rule for win.isfb detects
win.dreambot. Both families are based on the leaked
gozi source code [34], with Dreambot e.g. be-ing able to use Tor. Other overlap that is simi-larly explainable is found e.g. for win.dropshot,
win.shapeshift, and win.stonedrill. The rule for
win.reactorbot also causes hits in win.rovnix, be-cause this protector/rootkit has been used in conjunc-tion with win.reactorbot and the samples in Malpe-dia for win.rovnix contain the win.reactorbot pay-load. One hit is also caused by a binary duplicatestored under two family names in Malpedia (that hassince been resolved). For the remaining 13 hits, wecould not find a better explanation than disassemblyerrors and potential library code overlap.With regard to false negatives, we note that they

are also the result of different effects. In the major-ity of cases, we note that disassembly errors may leadto situations where parts of a sample are missed thatcould otherwise be used as characteristic sequencesfor a given family. This naturally causes a situationwhere not enough sequences for a sample are ex-tracted and incorporated into the rule, causing it tomiss the sample. We found that this particularly af-fects samples that already have a very small numberof functions. In a number of cases, we also found thata sample sorted into the wrong family resulted in elim-ination of many otherwise possible sequences fromrules in the filtering stage, leading to an insufficientnumber of sequences to trigger on the sample. Thishad the positive side effect that we could optimize thecorpus and correct these wrongly classified samplesin the data set. In few cases, we also noticed that thishappened in legitimate cases, especially when a fam-ily as itself is used as a "module" in another family.

6.4 False Positive Analysis

We now conduct an analysis of false positives on asecond data set. For this analysis, AVAST kindly ranour rules against their clean data set and provided thedetection results back to us. The data set comprisesof about 10 TB of data and any hits can be safely as-sumed to be undesired as it only consists of knownbenign software.
We register a total of 13,879 hits caused by 70of the 992 rules. While this seems initially likea large number, the distribution is highly skewed.The rule with the most hits alone is responsiblefor 8,206 hits (59.13%) and targets the ransomware

win.scarabey [35]. We analyzed the rule compositionand malware, noting that the malware makes exten-sive use of Application Framework Extensions (AFX), apredecessor of Microsoft Foundation Classes (MFC),typically used to create GUIs. Smaller portions of AFXcode fragments are only found in 6 othermalware fam-ilies. Because AFX was not added to the blacklist be-forehand, this leaves enoughn-grams to be considered"unique" across the malware in Malpedia. However,since lots of benign software also make use of AFX,this immediately explains the amount of FPs causedby this.
Looking at the next rules in the top five, we find1,258 (9.06%), 957 (6.90%), 914 (6.59%), and 370(2.67%) hits. Only 6 other rules havemore than 100 hitsand all of them together are responsible for 92.96% offalse positives. For the remainder, there are 31 ruleswith between 10 and 100 hits, while 28 rules produceless than 10 hits.
It is also notable that 4 out 24 rules for macOSmal-ware produce false positives. This is explained withthe fact that with such few families in Malpedia gen-erally the expected code elimination effect is minimalcompared to Windows PE files and that the blacklistdata did not specifically target macOS.
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7 Limitations and Future Work

We now discuss limitations and ideas for future im-provements of YARA-Signator.Right now, YARA-Signator is only capable of ingest-ing disassembly reports created using SMDA. The pri-mary limitation of this is that only input binaries con-sisting of x86 and x64 Intel machine code can be pro-cessed. Ways to improve this situation would be toprovide additional or a more generic interface for dataingestion. For example, YARA-Signator could providean interface to parse the output of other disassem-blerswithwider architecture coverage such as IDAPro,Ghidra, or radare2. Otherwise, it could also provide aninterface to ingest pre-processed data sequences as afull replacement of the current first phase. This wouldopen it to e.g. working on raw byte sequences of arbi-trary length.While providing rules that lead to few false posi-tives already, further improvement could be achievedby providing a more comprehensive blacklist of codefound in benign programs. For further reduction offalse negatives, the parameters of the system (n-gramsize, n-grams per family and hit condition, ...) could beevaluated to find an optimal configuration.We also believe that there is room for further re-search and improvement in the sequence selectionprocess.

8 Conclusion

In this paper we presented YARA-Signator, a frame-work for the automated generation of code-basedYARA rules.First, we outlined the general idea of isolating char-acteristic code sequences unique to a family throughfiltering and data aggregation. We explained the pro-cessing stages including n-gram deriviation and codewildcarding up to rule creation and iterative improve-ment, as well as the implementation of the frameworkin detail.Next, we performed a statistical analysis of thecomprehensive malware corpus Malpedia, showingthat the general idea of finding unique code sequencesfor malware families is very viable. With on average51.85% of n-grams being unique to a family, this leavessignificant amounts of code to pinpoint and base sig-natures on, e.g. using YARA.We then used YARA-Signator to produce YARArules for 992 processable malware families in Malpe-dia and evaluated the detection performance of theserules against the input data set and a collection of be-nign software. The results are very positive, with aF1 score of 0.983 against the input data set and just13,879 false positives from 70 rules (out of which only11 cause more than 100 FPs) on a goodware corpusspanning more than 10 TB of data.We provide the code for YARA-Signator as opensource via the GitHub repository: https://github.

com/fxb-cocacoding/yara-signator, and the fre-quently updated YARA rules created from the Malpe-dia corpus can be freely accessed using the RESTAPI: https://malpedia.caad.fkie.fraunhofer.de/
api/get/yara/auto/zip.
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