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Abstract

Given today’s masses of malware there is aneed for fast analysis and comparison of sam-ples. SystemAPI usage has been proven to be avery valuable source of information for this e.g.shown by Rieck et al. [1]. However, the majorityof malware samples is shipped packed, makingit hard to get accurate information on their pay-load’s API usage. Today’s state of the art to getthis information from packed samples is by un-packing them or dumping memory with subse-quent reconstruction of imports using tools likeImpREC and Scylla. This has several drawbackssince it is a manual procedure requiring a liveprocess environment and suffers from inaccu-racy due to missed dynamic imports.In this paper, we present ApiScout, a fully au-tomated method to recover API usage informa-tion from memory dumps. It does not require alive process environment and is capable of han-dling dynamic imports leading tomore accurateresults compared to existing approaches. ApiS-cout is a two-staged approach. The first stageis a preparation step creating a database of can-didate offsets for API functions. In the secondstep we crawl through a givenmemory dump ofa process and match all possible DWORDs andQWORDs against this database yielding us APIreference candidates. We filter and enrich can-didates using different procedures leading us tothe desired API usage information.Based on this information, our second contribu-tion in this paper is a concept called ApiVec-tors. It efficiently stores the information ex-tracted by ApiScout. This enables fast assess-

ment of a malware’s potential capabilities andallows similarity analysis of API usage acrosssamples. For the latter the methods imphashand impfuzzy are the de facto standard. How-ever, they both suffer from inaccuracy due toexclusively relying on the import table and non-recoverability of input data. In our approach weuse Jaccard and Tanimoto similarity to com-pare ApiVectors, leading to a much higher ac-curacy.Our third contribution is an extensive analysisof API usage across 589 malware families ofthe Malpedia dataset. The families combineduse only about 4500 APIs that can be groupedinto 12 semantic groups. The analysis fur-ther proves the functionality of ApiScout andshows that ApiVectors clearly outperform im-phash and impfuzzy.
Keywords: malware analysis, malware classifica-tion, Windows API, visualization

1 Introduction

Even with continuous advances and growing tool sup-port, in-depth malware analysis and reverse engineer-ing in general remain a tedious, primarily manually ex-ecuted task. Among the most important steps duringanalysis are the rapid identification of the family for agiven malware sample, e.g. to allow incorporation toexisting analysis results, and the localization and se-mantic annotation of relevant regions in the binary thatmost likely contain points of interest, such as code re-
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lated to persistence, communication, or specific mali-cious capabilities. Especially for the latter, an analysttypically depends on orientation along prominent cor-nerstones, which are first and foremost interactionswith the operating system, e.g. with the Windows APIor system calls on unix-based systems.Therefore, it is highly important during the pre-processing for in-depth analysis (i.e. typically duringunpacking or directly after) to annotate and recoverthis system API information to consequently allow ef-fective analysis of the program’s interactions with thissystem interface. As generic unpacking is still far frombeing solved [2], dumping memory is a common prac-tical take to circumvent packers in an approximatingway. However, this oftentimes implies rebuilding a bi-nary from a memory dump of a mapped process im-age, ensuring correct section boundaries and applyingspecial care for its import table. Recent research [3]has shown that almost 50% of 382 investigated in-dividual Windows malware families make use of dy-namic imports that are not reflected by the given PEheader’s structures. Because these dynamic importsare often not in proximity of the regular import ad-dress table or are even stored in custom structures,they are regularly missed by available state of the arttools for import reconstruction such as ImpREC andScylla [4]. Additionally, these tools require that the pro-cess from which the memory dump was taken and forwhich the import information shall be reconstructed isstill alive and running, making their application in auto-mated analysis complicated.We propose a generalization to the API recoverymethod presented by Sharif et al. [5] in context of theirEureka framework that we call ApiScout. ApiScout (af-ter a one-time setup) works completely independentfrom a running system and is especially suited for theautomated post-processing of memory dumps. It iscapable of recovering both import table based andcached dynamic Windows API references, and trans-ferring this information directly into popular analysistools such as IDA Pro [6], effectively removing theneed for accurately rebuilding binaries from memorydumps.In addition, we propose a second concept calledApiVectors which efficiently stores the results ex-tracted with ApiScout, i.e. presence of references toWindows API functions. As this informationmay allowan analyst to derive a first assessment of a malware’spotential capabilities, we also provide a compact visu-alization method for these vectors to support this ac-tivity. We furthermore introduce a method to compareApiVectors in order tomeasure the similarity of API us-age across binaries. Currently, there are two de factostandard methods for import table similarity analysis:
ImpHash [7] and ImpFuzzy [8]. We extensively evaluateour method ApiVectors and show that it outperformsboth of these methods.In summary, we make the following contributions:• We present ApiScout, a method for robustly re-covering Windows API usage information frommemory dumps that can capture both import ta-

ble based and cached dynamic imports, requir-ing no running system or disassembly.• We conduct an extensive analysis of WindowsAPI usage patterns across 589 malware fam-ilies, analyzing the occurrence frequency andgrouping around 4,500 Windows API functionsinto semantic context groups.• We introduce ApiVectors, a method to efficientlystore and compare ApiScout results, and showthat the matching capabilities of ApiVectors out-perform both of the de facto standards ImpHashand ImpFuzzy.• We publish a production-ready library that allowseasy integration of ApiScout and ApiVectors intoexisting malware analysis workflows and pro-vide a reference set of ApiVectors for more than700 malware families to be used for future mal-ware classification.The remainder of this document is structured asfollows. In Section 2, we describe the concepts forboth ApiScout and ApiVectors in detail. In the course,we provide information about the evolution of the Win-dows API. Section 3 provides a detailed evaluation ofthese concepts using theMalepdia data set. We derivethe best parameter combination for ApiVectors andinvestigate the general capabilities and limitations ofWindows API usage information in the context of simi-larity analysis and classification ofmalware. Section 4gives an overview of related work while Section 5 con-cludes the paper.

2 Approach

The Windows API is a programmer’s primary interfacefor interacting with Windows on system level. Thisholds true for malicious software in the same wayas for benign software. Because it is hard if not al-most impossible to avoid using the Windows API formost invasive tasks, it bears high relevance for pro-gram analysis. In fact, it is one of the essential cor-nerstones for orientation in reverse engineering andthus for inferring the behavior of code. Luckily, theWin-dows API is a well-documented and stable structuretied to the NT kernel, which is organized in layers ofabstraction. Programming using the Windows API willtypically lead to the creation of an Import and/or DelayImport Table (IT) in the compiled binary program’s PEheader. These tables are effectively the blueprint forthe Import Address Table (IAT) which ultimately accu-mulates the references to the Windows API.Apart from using packers, malware often tries toconceal its usage of the Windows API [3]. Besideseasily reconstructable static imports (using the IAT),cached dynamic imports resolved during runtime ap-pear as frequently as in 45%of analyzedmalware fami-lies, while another 5% of families make use of fully ob-fuscated API usage. Currently available tools requirea running system environment and the process infor-mation it provides and yet are barely able to reliably
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recover all information (especially cached dynamic im-ports), which highlights the need for new methods.In this section, we describe our approach ApiScoutin detail. ApiScout is a technique that makes use oftrivially obtainable domain knowledge in order to accu-rately extract references to the Windows API as foundin arbitrary mapped program images such as memorydumps. Our method is a significant generalization ofthe approach presented by Sharif et al. [5] in the con-text of their unpacking framework Eureka. Opposite totheir work, our method is capable of locating API ref-erences in absence of other analysis methods such asdisassembly and call analysis, which potentially leadsto better coverage while being easily applicable in iso-lation. In a second part, we introduce ApiVectors, aconcept to efficiently store the data extracted usingApiScout. Apart from outlining how ApiVectors arecomposed, we also explain how they can be comparedto measure similarity.

2.1 ApiScout: Extraction of Windows API
References

ApiScout aims at easing the task of import reconstruc-tion when dealing with memory dumps. This is a typi-cal situation analysts find themselves in when unpack-ing malware. The application of this technique is di-vided into two stages, a mandatory preparation phasewhich usually only has to be performed once for agiven patch state of the operating system and the ac-tual application in the second step.The first stage is a necessary preparation step inwhich a database of all exported functions of exe-cutables and most importantly Dynamic Link Libraries(DLLs) is created. This is performed by parsing the PEheader of files for their preferred ImageBase addressas well as all of the exported functions they provide inorder to obtain their Relative Virtual Addresses (RVA).Assuming DLLs are mapped at their desired memorylocation (ImageBase), the expected Virtual Address(VA) of API calls is simply calculated as ImageBase +RVA. Performing system-wide indexation ensures thatall information potentially required is available for thesecond stage.Although not explicitly explained, we assume thatSharif et al. [5] used a similar technique to dynami-cally create a database for all DLLs in a given process,recording ImageBase and RVA pairs for all WindowsAPI functions. Should the operating system use Ad-dress Space Layout Randomization (ASLR), every DLLis also loaded once in order to initialize their respec-tive randomized global load offsets, which is recordedalong the other data. Note that in this case, ASLR loadoffsets have to be derived after every reboot of the op-erating system.However, we found that in typical analysis usecases (manual dynamic analysis or sandboxing) it issufficient to build the database just once as virtual-ization and snapshots are frequently used. In ourcase, the indexation procedure took between 2 and

5 minutes on a virtual machine typically configuredfor dynamic malware analysis (2 CPUs, 4 GB RAM).To provide an overview of typical database sizes, Ta-ble 1 gives an overview of the number of availableWindows DLLs and API functions per operating sys-tem version (vanilla installation of Professional Editioneach). The column "All" lists database results whenthe whole hard disk is crawled. We noticed that a sig-nificant number of DLLs is stored redundantly, whichis why we additionally provide the "Unique" column, inwhich each DLL-API name pair is counted only once.Note that 64bit OS versions of Windows will also fea-ture 32bit versions of most system DLLs to enable theWOW64 compatibility mode, which explains the big-ger gap of versions Windows 7 and above versus Win-dows XP. The total number of unique pairs of DLL andexported function across all of these combined is at323,851, whichmeans that there are seemingly entriesthat are unique to specific Windows versions.
All UniqueName Version/Build APIs DLLs APIs DLLs

Win XP NT5.1/2600 128,408 1,597 101,710 1,584Win 7 NT6.1/7601 251,186 3,828 168,176 2,215Win 8.1 NT6.3/9600 282,802 5,154 183,424 3,024Win 10 NT10.0/17134 338,456 5,971 234,528 3,751
Total 323,851 5,686

Table 1: Number of DLLs and exported API functions foundin different vanilla installations of Windows. Windows XP is32bit, all others are 64bit versions.
The second stage is the actual recovery of Win-dows API references from memory dumps. We firstcalculate the expected Virtual Address for every ex-ported function by adding the DLL’s ImageBase and ex-port RVA offset, while accounting for a potential addi-tional offset introduced by ASLR.Having calculated all values, we can cache them ina database against which queries can be performed.Using the Virtual Address as key, it is obviously pos-sible that exported functions from two or more DLLsmay map to the same address. We analyzed thesepotential collisions for all operating system versionsshown in Table 1.ForWindows XPwe found a single collision and forWindows 7 we identified 178 collisions, with none ofthem being in critical system DLLs. However to oursurprise, we noticed 55,181 and 115,022 collisions forWindows 8.1 and Windows 10 respectively. Our inves-tigation of this circumstance lead to the explanationthat the majority of DLLs in these Windows versions iscompiledwith an ImageBase of 0x10000000 (32bit) or0x180000000 (64bit) and the system fully relies on dy-namic rebasing and ASLR to ensure conflict-free map-ping into the memory space. In these cases, the APIdatabase has to be built for a specific initialized run-ning instance of the givenWindows system (with ASLRper DLL being identical across processes because ofWindows’ shared memory concept).Now, in order to actually recover Windows API ref-erences for a given memory dump of a process, we
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now crawl through the wholememory dump and queryevery possible DWORD and QWORD (to account for32bit and 64bit systems) in the given memory dumpagainst the database and collect hits as candidates.These candidates are then (optionally) filtered andenriched with information using the following proce-dures.First, it is common that references to the WindowsAPI appear in clusters, similar to their native represen-tation (IAT). We can exploit this to remove any hits thatdo not have another hit in their immediate neighbor-hood, e.g. using a window of 32 or 64 bytes.Second, in case the memory dump contains a PEheader, we can additionally use the Import and De-lay Import Table to check if API references are part ofthe Import Address Table. On the one hand, we canuse this information to confirm crawled candidatesas actual hits. On the other hand, we can afterwardscompare the API entries described by these structuresagainst all other confirmed candidates in order to de-rive whether or not the given programmakes extensiveuse of cached dynamic imports.Third, we can derive an estimate of how manytimes an API reference is itself used in a call or jmp in-struction. We are aware that full disassembly (e.g. asused in [5]) would enable the entire stack of in-depthanalysis methods such as data flow analysis whichcould provide us with accurate references. However,these methods are typically very expensive in termsof analysis time, hence we decided to instead approx-imate these code references by limiting ourselves tothe two instructions that are most commonly usedto interact with Windows API references: call dword

ptr <offset> and jmp dword ptr <offset>.For x86 machine code, the Opcode bytes for theseinstructions are FF15<offset> and FF25<offset> re-spectively, with <offset> being an absolute mem-ory address. Given a memory dump, we typicallyknow the <base_address> it was taken from, whichin turn allows us to calculate and check if <offset>
- <base_address> falls within the size of the mem-ory dump and points to one of the API referencecandidates. If yes, we can increment our approxi-mated reference counter for that API reference. Forx64 machine code, the Opcode bytes for these in-structions are 48FF15<offset> and 48FF25<offset>respectively, with <offset> being a relative offset. Thecalculation and check can be performed analogously.While this approach seems naive and one wouldexpect False Positives, we found that it is very accu-rate in practice. In order to measure ApiScout’s ac-curacy, we used 15 common benign system binariesfrom theWindowsXPSP3 systemand producedmem-ory dumps for their corresponding loaded program im-age. Using their Import and Delay Import Tables asground truth, there are a total of 5,367 API referencesto be found in the Import Address Tables of these pro-grams. On this data set, ApiScout achieves an F-Scoreof 0.991 and 0.995 (with neighbor filtering) respec-tively, correctly identifying all ground truth entries withzero False Negatives.

We investigated the results manually to ana-lyze the False Positives. For the three programs
explorer.exe, mmc.exe, and cmd.exe, 51 False Posi-tives are found. As it turns out, all three programs use
kernel32.dll!GetProcAddress to dynamically loadadditional references to API functions during runtime.This easily explainswhy ApiScout also correctly identi-fied these references which were however not coveredin the ground truth.

We used the same set of programs to also testthe accuracy of the reference count approximation.For this reason, we used Hex Rays’ IDA Pro 6.9 toidentify all code references to the offsets of the IAT.IDA identifies a total of 30,928 references to the 5,418API offsets, while ApiScout identifies 27,640 (89.37%).Through manual inspection we identified that the re-mainder were almost entirely code references through
call <register> instructions, which have most likelybeen generated in order to preserve space when beingused multiple times within one function. As explainedearlier, it would be possible to derive their call targetsusing e.g. data flow analysis but this is out of scopefor ApiScout as we are only interested in API referencerecovery.

In summary, we believe that ApiScout producesvery accurate results for the recovery of API refer-ence offsets and acceptable estimates for API refer-ence counts. Both of these information items serve asvaluable insight on which further analysis can be builtupon.

2.2 ApiVectors: Storage and Comparison
of Extraction Results

After having recovered references to theWindows API,it makes sense to persist this information for use infurther analysis. While it makes sense to store fullApiScout reports, related works (section 4) show thata compact representation enabling comparisons is fa-vorable. However, these existing methods use hash-ing to create fingerprints, which incurs loss of sourceinformation. With our approach we want to fulfill therequirements that on the one hand the source informa-tion is preserved and on the other hand the represen-tation is still compact, ideally consisting of printablesymbols only.
In this section, we now introduce our proposal for astorage and comparison format for ApiScout results:ApiVectors. ApiVectors are effectively vectors with aspace-optimizing compression that preserve informa-tion about the occurrence of references to selectedWindows API functions for a given memory dump.
Please note that the concept outlined in the follow-ing could be generally applied to other system APIsas well, e.g. to Android’s [9] API concept of packages,classes, and permissions or UNIX system calls.
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Figure 1: A full example for the construction, compression, and similarity calculation of two ApiVectors A and B. TheApiVectorBase has length 32 and contains the most common Windows API functions as found in the Malpedia datatset.Compression is achieved by using Base64 with a custom alphabet (section Table 2) and applying run-length encoding forrepetitive symbols. Similarity between the vectors is calculated using Jaccard similarity with optional weights for vectoroffsets.

Construction

To achieve the goal of compactness while preservinginformation, we need to systematize and abstract theinformation to be held in the vectors. Thus, in order toconstruct an ApiVector, we first apply normalization toall API references as found by ApiScout.
First, we drop the A/W suffix that is found for arange of Windows API functions, indicating if they pro-cess ANSI or Unicode strings [10]. We justify thiswith the fact that these API functions otherwise carryout the same functionality semantically (which is sup-ported by having joint documentation pages in theMSDN).
Second, we unify the different versions of the Mi-crosoft Virtual C Runtime (MSVCRT) into a single DLLname (mscvrt.dll, instead of msvcr80.dll, msvcr90.dlland so forth). This allows us to collect and com-pare this information even in case the compiler versionused for a malware family is changed over time.
Third, we demangle API names [11] and drop allmeta information except for the actual function name.This simply cleans up readability for the API namesand also in some cases summarizesmultiple polymor-phic functions into one representation.
After this pre-processing, we perform abstractionintroducing a mapping that converts the Windows APIreferences into a vector. While not strictly required, weuse powers of two as vector length (as it benefits ourlater presented visualization concept). The basis forour mapping and hence all ApiVectors is an orderedcollection of DLL/API names that will serve as labels

for the offsets in the vector, in the following we will re-fer to this as ApiVectorBase.The vector entries can now be either bit-sized orbyte-sized, depending on whether just the presence oralso the reference count should be stored. We referto them as ApiVector or FrequencyApiVector respec-tively. In case of the FrequencyApiVector, the countis deliberately capped at 255, allowing us to use asize of one byte per entry. This decision is justifiedwith an observation from [3], where only 12 instances(out of 171,346 references to WinAPI functions in 1208malware samples) had reference counts exceeding avalue 255.Two example ApiVectors with length 32 are shownin Figure 1. The figure also demonstrates compressionand calculation of similarity as explained in the follow-ing two sections.
Compression

Plohmann et al. [3] further report thatWindowsAPI ref-erences in malware (and most likely in software gen-erally) are not evenly distributed. Instead, they ap-pear heavily skewed towards few API functions thatare used with much higher frequency than others. Fur-thermore, assuming generally sparse vectors, we canexploit this knowledge and design our storagemethodin a way that reduces the required space while it stillremains almost loss-less with regard to information inthe best case.In order to optimize storage, we propose the follow-ing compression method that can be used to convertApiVectors into a compact format consisting only of
Daniel Plohmann, Steffen Enders, Elmar Padilla. ApiScout: Robust Windows API Usage Recovery for Malware Characterization andSimilarity Analysis 5
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printable characters (achieving the second goal). Wefirst use an approach very similar to Base64 [12], butexchange the default alphabet with the custom alpha-bet shown in Table 2. To explain, we have replacedthe numbers originally contained in Base64 by otherprintable symbols in order to have them available forrun-length encoding, as clarified in the following.
000000 A 011010 a 110100 @ 111010 *000001 B 011011 b 110101 } 111011 /000010 C 011100 c 110110 ] 111100 ?... ... ... ... 110111 � 111101 ,011000 Y 110010 y 111000 + 111110 .011001 Z 110011 z 111001 - 111111 _

Table 2: The custom Base64 alphabet used for compressionof ApiVectors.

We first take the binary representation of anApiVector and apply zero-padding to achieve a multi-ple of 6 in length. Then, we pack each subsequent 6bits into a symbol from our alphabet, analogously toBase64. Next, we use the numbers that have beenfreed to perform run-length encoding. Repetitions ofsymbols for more than 2 times are replaced by thesymbol suffixed with the number of repetitions, mean-ing a sequence of e.g. "AAAAAA" becomes "A6", while"AA" remains the same.This yields our final compressed ApiVector. Thisrepresentation both preserves information aboutwhich Windows API functions are referenced and isalso compact and printable.A full example for the compression of two vec-tors including application of the run-length encodingis shown in Figure 1. Obviously, the same method canbe applied to FrequencyApiVectors. Additionally, us-ing a vector length based on a power of two as rec-ommended earlier allows to unambiguously derive thenumber of padding bits for every vector longer than 4.

Similarity and Matching

It is safe to assume that different versions of programsthat originate from the same code base will likely con-tain similar usage patterns of theWindows API. There-fore, the next logical step is to look into a suitablemethod to compare ApiVectors of the same parame-terization (i.e. ApiVectorBase etc.) and determine theirsimilarity.To compare binary vectors, numerous similarityand distance measures have been proposed [13]. ForApiVectors, we want to prioritize common appearanceof API references in the vectors to be compared andare not interested in common absent APIs. This al-ready rules out 32 of the 76 techniques presentedin [13]. Becausemany of the remaining negativematchexclusive metrics fall into the same hierachical cluster(indicating their correlation), we decide to use the Jac-card similarity [14] as one of the most commonly usedand best understood representatives, i.e. for givenApiVectors A and B, the similarity is calculated as:

J(A,B) =
|A ∩B|
|A ∪B|

BecauseA andB are already bit vectors, the calcu-lation can be efficiently implemented through Booleanlogic as:
J ′(A,B) =

S(A ∧B)

S(A ∨B)

in which S counts the number of bits set in a givenbit vector. This is similar to the method used in [15].We now additionally introduce the possibility toapply weights to the individual vector offsets. Suchweights make sense, because the occurrence fre-quency of Windows API functions may vary greatly.Thus, the weights can be used e.g. to diminish theinfluence of very common or boost the influence ofrare API functions. With regard to our computation,we extend S in a way that before addition of the vectorfields, the Hadamard product (i.e. element-wise mul-tiplication) with a second weight vector W is createdand denote this new function as SW , and the Jaccardsimilarity using this function as J ′W (A,B). A completeexample for such a calculation is shown in Figure 1. Itfeatures an ApiVectorBase of length 32 and the weightvector WL, which uses the position in the vector asweight.For FrequencyApiVectors, we can no longer use theJaccard similarity becausewe neither have sets of APIreferences nor a bit vector but instead individual oc-currence counts of API references. Still, we want topreserve the characteristics of the Jaccard similarity.Therefore, we adopt the continuous form of the Tani-moto similarity [16]:
T (A,B) =

A ·B
|A|2 + |B|2 −A ·B

To highlight the similarity to the Jaccard similarity,note that in the case of A and B being bit vectors asin our previous case, T (A,B) will calculate an identi-cal result to J ′(A,B). We also introduce the applica-tion of weight vectors for T (A,B), yielding TW (A,B)for weight vector W . However in this case, we have toapply the weight vector directly to A and B before theactual calculation of T (A,B) and again use element-wise multiplication between W and A, B respectively.

3 Evaluation
In this section, we will evaluate the concepts of ApiS-cout and ApiVectors from different viewpoints. First,we give a short outline of the data set used in all ofthe following evaluations, which is the Malpedia dataset [17]. Next, we present the results of applying ApiS-cout to this data set, which provides uswith some gen-eral statistics on the Windows API usage characteris-tics of malware. After this, we will have a closer lookat the possible parameterization of ApiVectors. In this
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context, we examine to what degree Windows API us-age information can be used as a similarity measure-ment tool for malware classification. Finally, we showthat our method of ApiVectors greatly outperform thetwo current state-of-the-art approaches ImpHash and
ImpFuzzy.

3.1 Dataset

For the following evaluations, we use the Malpediamalware corpus [17]. Malpedia is a manually curatedcollection of cleanly labelled and unpacked malware.The organization of the corpus has been designed fol-lowing best practices [18]with numerous contributionsthrough a community of professional malware ana-lysts, researchers, and incident responders.As the corpus is inventorized in form of a git repos-itory, we can reference the data used in this evalu-ation as being tied to commit hash d863e1d, dated2018-05-17. In this revision, the corpus contains mem-ory dump data for 673 distinct peer-reviewed Win-dows malware families, represented by 1,854 sam-ples. These memory dumps originate from two fixedsystem snapshots (Windows XP and Windows 7) forwhich the maintainers provided us the respective Win-dows API databases as required by our approach (sec-tion Section 2.1). In all of the following, ApiScout willbe configured to use a neighborhood window of 32bytes for filtering. Additionally, we remove databaseentries for DLLs with a base address of 0x400000,0x10000000, and 0x180000000 as we noticed thatthey are slightly prone to False Positives because theirbase addresses overlap with the offsets of a signifi-cant number of memory dumps in the Malpedia dataset. In the lookup database, this affects 20DLLs (1.3%)with 4,746 API functions (3.7%) for Windows XP and405 DLLs (10.6%) with 14,912 API functions (5.9%) forWindows 7. Please note that we carefully reviewed alloccurrences of hits for these DLLs (958 out of 249,054hits total, i.e. 0.4%) to ensure that no actual referencesto the Windows API were removed or highly relevantDLLs were affected.

3.2 Malware Usage Characteristics of the
Windows API

The first part of the evaluation we will apply ApiScoutto all memory dumps in the data set and examine theresults. We will also put this data in relation to theearlier findings reported in [3]. The data set containsalsomalware that is written in scripting languages andother frameworks that make only indirect use of theWindows API. Because of this, we first have to discardmalware families written using the .NET frameworkbecause it proxies references to the Windows API in away that can not be compared to the remainder of fam-ilies that exist as natively compiled code and directlyinteract with the Windows API. This affects 84 out ofthe 673 (12.48%) families with 130 samples, leaving us

with 589 families that can still be analyzed using ApiS-cout.
According to the taxonomy presented in [3], threedifferent Windows API usage styles can be identifiedthat have been defined as follows:
1. Static (i.e. regular) imports using the PE header’simport table.2. Dynamic imports of WinAPI function addressesthat are cached within the memory occupied bythe malware.3. Custom import schemes without caching of ref-erences that are considered as further obfusca-tion.
Although the data set has almost doubled in itsnumber of covered malware families since its origi-nal publication, the distribution of usage styles hasmerely changed. Our observation is that the fractionof malware families using static imports exclusivelyhas slightly increased and is still the biggest part withnow 51.2%. Families exclusively using dynamic im-ports make up 19.0% and a combination of static anddynamic imports are used by 25.7%. Consequently, thefraction of families using obfuscation has decreasedto 2.9% and 3.9% in combination with one or both ofthe other methods. In other words, this means thatApiScout can successfully extractWindowsAPI usageinformation from96.1% of the givenWindowsmalwarefamilies in this data set.

WinAPI functions DLLs
Minimum 0.00 0.0025% 80.00 5.0050% 115.00 7.5075% 172.00 10.00Maximum 706.00 24.00Average 140.88 7.95Total Observed 4664.00 62.00

Table 3: Distribution of DLL and API usage as observedthrough ApiScout extraction. Aggregated over 589 malwarefamilies.

For the 589 families, we observe a total of 4,664unique API functions from 62 DLLs being used. Notethat application of the normalization procedure de-scribed in Section 2.2 would reduce this number to4,008 API functions. The characteristics of the distri-bution over families are shown in Table 3. We can ob-serve that on average, about 140 API functions from8 DLLs are referenced. Compared to the whole spec-trum of the Windows API or even the range of DLLsfound beingmapped in a running system as describedin Section 2.1, this appears to be a rather small num-ber.
Daniel Plohmann, Steffen Enders, Elmar Padilla. ApiScout: Robust Windows API Usage Recovery for Malware Characterization andSimilarity Analysis 7



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 4, NO. 1, DEC. 2018 BOTCONF 2018 PROCEEDINGS

0 1000 2000 3000 4000

WinAPI Function

0

100

200

300

400

500

600

O
cc

ur
re

nc
e

in
Fa

m
ili

es

Figure 2: Occurrence frequency of WinAPI functions with re-gard to number of families they appear in.
Looking at the frequency of occurrence of the in-dividual API functions aggregated over families (Fig-ure 2), only 30 API functions appear in more than 50%of the families while 4332 API functions (92.88%) ap-pear in 10% of the families or less. This lets us con-clude that on the one hand, there is a strong set ofvery commonWindowsAPI functions that seems to beessential to (malicious) programs, while on the otherhand, there is a significant range of API functions re-quired or available to implement a variety of differentcapabilities. We think that especially the long tail inthis distribution should benefit the formulation of clas-sification methods based on Windows API usage.

3.3 Parameterization of ApiVectors

In this section, we explore how parameterization af-fects ApiVectors and FrequencyApiVectors, primarilythe size and composition of their ApiVectorBase. Theaggregated ApiScout extraction results for all samplesinventorized inMalpedia as explained in Section 3.2 al-low us the following conclusions:First, the set ofWindowsAPI functions even for thiswide range of different (unpacked)malware families inthis data set with 4664 elements is still manageable.This means we can use a value in this range as upperbound for our vector length. We decide to use 4096as the gain of using 8192 does not warrant the cost ofintroducing extensive padding.Second, the distribution is highly irregular andskewed towards the most common functions and weadditionally observe an average number of just 140.88referenced Windows API functions per sample, whichmeans we can expect mostly sparse vectors (a factthat we already exploited for our compressionmethodof ApiVectors, see Section 2.2). Additionally, thismeans the most frequently observed Windows APIfunctions are likely relevant to the innerworkings ofmalware while the less frequent naturally carry moreinformation (according to Shannon entropy [19]). Wetherefore first study ApiVectorBases composed of the

first n most common Windows APIs as extracted byApiScout.
Analysis of Coverage

First, we will focus on the Windows API function cov-erage. For obvious reasons, it is in our interest tomaxi-mize the coverage to have our vector represent the APIfunctions used in a sample as complete as possible.On the other hand, we have to balance against the ex-pected size in bytes as we want to minimize the metadata overhead.In Table 4, the coverage of usedWindows API func-tions is shown for a range of different vector sizes. Asone can see, the vector of size 4096 expectedly cov-ers nearly all imports of all samples in the Malpediadataset. Reducing the vector size to 2048 only de-crease the mean coverage by about 2%. On the otherhand, the smaller vectors of 64 to 256 cover only 33.3%to 67.5% of APIs on average. For a size of 512, the re-spective ApiVector already covers 82.08% of the iden-tified used Windows API functions, and a vector sizeof 1024 with a coverage of 92.5% seems the best com-promise between size and coverage.
Size 10% 20% 30% 40% Median Mean
64 15.2% 20.0% 23.8% 27.2% 31.2% 33.3%128 25.5% 33.3% 37.9% 43.6% 48.7% 50.7%256 44.4% 51.3% 57.3% 63.0% 68.9% 67.5%512 63.6% 72.8% 77.3% 81.8% 85.6% 82.1%1024 81.5% 89.2% 92.6% 94.4% 96.0% 92.5%2048 94.1% 97.4% 98.4% 99.1% 99.6% 97.4%4096 98.9% 100.0% 100.0% 100.0% 100.0% 99.4%
C-1024 69.2% 78.4% 83.2% 86.6% 90.3% 86.7%

Table 4: Percentage of coveredWinAPI function for the leastcovered 10-40% of samples. Results organized by vectorsize.

64 128 256 512 1024 2048 4096 C-1024
GUI 0 0 15 69 195 551 1202 27System 5 16 32 57 108 204 547 150Execution 25 43 74 132 209 316 464 229String 7 10 17 32 101 223 315 52Network 1 14 30 60 100 175 295 192File 13 22 34 67 104 168 241 114Device 0 0 1 7 28 79 142 66Other 0 0 2 8 52 72 117 24Crypto 0 1 6 20 34 57 115 48Memory 9 15 28 37 59 86 102 68Registry 4 5 10 15 19 33 57 32Time 0 2 7 8 14 25 35 22
Unknown 0 0 0 0 1 59 464 0

Table 5: Breakdown of semantic categories at different vec-tor lengths. Distribution in C-1024 for comparison.
It is important to note that using ApiVectorBasesthat are composed entirely by frequency of occurrencedoes not address the semantic context in which theseWindows API functions are typically used. Becausewe strive for the concept of ApiVectors to be use-ful to the practical work of malware analysts, we de-cided to review the list of observedWindows API func-tions and classify them by their typical use cases. We
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decided to use 12 semantic context categories intowhich we tried sorting the 4096 most common Win-dows API functions. We had to leave 464 functionsunassigned (mostly undocumented, most likely inter-nally used functions), for which we could not reliablydetermine their corresponding category. Table 5 givesan overview of the distribution of categories in the dif-ferent vector lengths, sorted by the number of occur-rences in the longest vector.As can be seen, GUI-related functions take upmorethan a fourth of the inspected Windows API functions.The reason for this is primarily that interaction withgraphical elements is extensively organized per func-tional element such as Menus, Forms, and Buttons,wheras access to this interface is mostly providedthrough components and libraries such asGDI [20] andMFC [21]. String manipulation also ranks rather highwith 315 identified functions, where many of them areredundant in functionality. The Other category mostlycontains API functions related to aspects like math-ematical functions, compression, or data structuresand Variant datatypes [22].Interestingly, key functional aspects like memorymanagement and access to the Windows Registry areenabled through few, but very important Windows APIfunctions, allowing malware authors few implementa-tion choices, while other aspects such as network ac-cess can be realized down from socket-based opera-tions (e.g. using ws2_32.dll) up to more abstractedmethods provoding convenience in their use (e.g. with
wininet.dll).As stated earlier, we want to balance the informa-tion carried in a vector against its size. We there-fore used our domain knowledge in reverse engineer-ing and malware analysis to create a custom vector oflength 1024 (referred to as C-1024 throughout this pa-per). For C-1024, wemanually balanced the ApiVector-Base by reducing the number of GUI, String, and Otherfunctionality in order to include more Windows APIfunctions connected to more relevant and meaningfulcategories when investigating malware. This shift infocus allows us to especially capture several indica-tions of interesting behavior that would otherwise beleft out. In the following, we will evaluate C-1024 alongthe other vector sizes.

Analysis of Storage Utilization

Next, we compare the required storage of the com-pressed ApiVectors (section Section 2.2) for all sam-ples of the Malpedia dataset. Table 6 gives anoverview of the distribution of values for different pa-rameterizations. As expected, the required storage in-creases notably with growing vector sizes and usingApiFrequencyVectors increases the value drastically.For (binary) ApiVectors, the maximum size of the vec-tors grows roughly proportionally with the vector size,however the average size increases only marginally,which is again related to the value sparsity in longervectors.

We have also listed the values for two other estab-lishedmethods of capturingWindowsAPI import char-acteristics: ImpHash and ImpFuzzy. ImpHash producesMD5 hashes for the import table, while ImpFuzzy inter-nally uses SSDeep [23] to capture and compare sim-ilarity of import tables. Please note that for both ofthese methods the original information cannot be ex-tracted, while ApiVectors preserve (most of) this infor-mation.
Method Size Min 25% Mean 75% Max

Binary

64 4 11.0 10.4 12.0 12128 4 20.0 19.2 23.0 23256 4 32.0 34.1 43.0 44512 4 45.0 57.5 79.0 871024 5 52.0 83.8 119.0 1722048 5 56.0 103.1 147.0 3044096 5 57.0 111.2 156.0 538C-1024 5 51.0 74.3 106.5 167

Frequency

64 4 41.0 59.5 82.0 87128 5 64.0 102.6 147.0 172256 5 93.0 158.9 228.0 329512 5 120.5 219.5 309.0 5941024 6 138.0 270.8 374.0 10352048 6 147.0 302.1 425.5 13044096 6 148.0 313.1 435.0 1890C-1024 6 127.0 240.1 342.0 780
ImpHash 32 32 32 32 32
ImpFuzzy 3 14.0 54.4 82.0 100

Table 6: Space consumption in bytes for all considered vec-tor lengths in both binary and frequency mode. Sizes for
ImpHash and ImpFuzzy for comparison.

ApiQR: Visualization of ApiVectors

One major side benefit of using vector lengths of apower of two is that every vector that is a square num-ber (such as in the case of C-1024) can be neatly fit-ted in a Hilbert curve [24]. We used this characteris-tic to create a concise visual summary of an arbitraryApiVector which we call ApiQR.For this visualization, we sort the Windows APIfunctions in our C-1024 ApiVector by their semanticcategories instead of occurrence frequency. As a con-sequence, and due to the nature of a Hilbert curve,functions of the same semantic category are placedspatially close to each other in ApiQR diagrams. Wehave introduced colors to better set off the differentcategories. Each cell in the Hilbert curve representsone API function and is colored according to its re-spective vector entry. In case an entry is present, it iscolored solidly, while absent entries are colored witha similar, but faded color. The result is a representa-tion where the presence of each single Windows APIfunction from the reference vector can be directly in-spected.This visualization of ApiVectors allows a rapid firstassessment of a malware’s potential functional ca-pabilities. Figure 3 shows the ApiQRs of four differ-ent malware samples that originate from four differ-ent malware families. In the left-most diagram it canbe observed in Figure 3b that DELoader has only avery sparse vector which reflects in its ApiQR diagram.We manually analyzed the sample and it consists ofonly 81 functions in total. Its functionality is limited
Daniel Plohmann, Steffen Enders, Elmar Padilla. ApiScout: Robust Windows API Usage Recovery for Malware Characterization andSimilarity Analysis 9
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(a) Semantic Categories (b) DELoader (c) Zeus (d) Citadel (e) DarkComet
Figure 3: ApiQR visualizations for binary files of four different malware families.

to downloading a payload via HTTP, which is then de-crypted using RC4 and integrity-verified using CRC32(statically linked, which is why it does not show in theCrypto section of the ApiQR) and then finally injectingit into a target process (explorer.exe).Regarding the two middle diagrams, Zeus andCitadel (Figures 3c and 3d), whose source-code is de-rived from the leak of Zeus, are feature-rich bankingtrojans and information stealers that both have sev-eral hundred functions. First, the similarity in the twoApiQR diagrams is very striking. It can be seen thatCitadel ismaking use ofmore API functions than Zeus,which is explained by some additions that have beenmade, functionality-wise.DarkComet (Figure 3e) on the other hand is a fully-fledged Remote Administration Tool (RAT), which con-tains a lot of intrusive functionality including capabil-ities to log or produce keystrokes as well as screengrab the victims Desktop.An interactive version of ApiQR diagrams has beenintegrated intoMalpedia [17]. We believe that these ex-amples for the application of ApiVectors and ApiQRsqualify the approach as a valuable practical tool formalware analysis.
3.4 Malware Identification
After having had a closer look at the effects of the sizeof ApiVectors on coverage and storage, we will nowevaluate how well they perform when used for mal-ware identification.As shown in Table 3 and Figure 2, the average num-ber of distinct APIs used per malware family has beenmeasured at just 140, while the occurrence frequencyof individual APIs across families is low for the vastmajority them. In combination, this means we canlikely expect sparse vectors that consist of relativelydiverse sets of APIs. Furthermore, we assume that itis likely that API usage patters are even more stablethan code since they are the semantic skeleton that de-scribes the overall capabilities of a givenmalware fam-ily. In this light, the approach seems very promising formalware identification because different versions ofthe samemalware family usually already share a greatpart of their code-base. It also holds true for potentialfuture versions of a given malware.Now, to compare ApiVectors with each other, weuse the distance functions J ′(A,B) (derived from the

Jaccard distance) and T (A,B) (continuous form ofTanimoto distance) as defined in Section 2.2. To be-gin with, we will examine the influence of vector sizeand optional weights on the matching performance inorder to find an optimal parameter configuration. Fol-lowing this, we will compare the performance of ourapproach with ImpHash and ImpFuzzy.
Finding an Optimal Parameter Configuration

Similar to the analysis presented in Section 3.3, wenow examine the influence of two parameters onthe matching performance of ApiVectors. For vectorsizes, we will again use the range from 64 to 4096and our self-defined C-1024. Additionally, we nowhaveto account for the strongly imbalanced distribution ofoccurrence frequencies observed in Figure 2. Froman information theory point of view [19] the less com-mon API entries carry more information and it couldbe worthwhile amplifying their signal by introducingweights.To analyze the influence and usefulness ofweights, we investigate three configurations:• Equal weights: Every vector offset has equalweight (set to 1).• Linear weights: Every vector offset is weightedwith a linearly increasing value, giving higher im-portance to API functions with lower occurrencefrequency.• Non-linear weights: We use the following sig-moid function to achieve non-linearly increasingweights: WS(i, n) = 50(1 + tanh
(
3 2i−n

2n

)
), with

i being the vector offset and n being the vectorsize. Note that we model the sigmoid using arescaled tanh function, which in our case returnsvalues in the range of 5 to 95.While equal weights can be seen as a baseline, lin-ear and non-linear weights are used tomeasure the im-pact of shifting weights towards lesser frequent APIfunctions in the vector.To measure the matching performance, we againresort to using the Malpedia dataset [3]. Because ourdistance function returns a value between 0.0 and 1.0,we canmeasure our similarity results against a thresh-old and evaluate using the Receiver Operating Char-acteristic (ROC) curve [25], measuring the True Posi-tive Rate (TPR) against the False Positive Rate (FPR).We compare every (non .NET-based) sample (1,724)
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(a) Best parameterization per vector length (b) All parameter results for C-1024
Figure 4: Comparison of ROC curves for selected parameter combinations and vector lengths (y-axis rescaled).

against every other. As True Positives we count casesin which a sample of the same family yielded a sim-ilarity score above the threshold. As False Positives,we count every case where a sample of another fam-ily yielded a similarity score above the threshold. Ithas to be noted that only for 275 families, more thanone sample was available in the dataset and thus onlyfor these matches can be achieved. These familiestogether contain 1505 samples (82.92% of the wholedataset).The comparative results of the evaluation for dif-ferent parameters are shown in Figure 4a, with onlythe best combination of binary/frequency vector andweight selected. We can quickly see that short vec-tors with 64 and 128 achieve the weakest performanceat low FPRs. Interestingly, these are also the onlyfrequency-based vectors among the best-per-class re-sults, meaning that this detailed view adds value inthis situation. This is likely due to the fact, that,here, frequency adds information value because onlythe high-occurrence APIs are considered in the vec-tor. Frequency-based vectors also seem to performbetter at very high FPRs, which however are undesir-able anyway. For longer vectors, frequency informa-tion seems to introduce additional noise that lessensperformance at low FPRs. In fact, the vector lengthgives no significant performance improvement be-yond a vector length of 512. Generally, binary vectorsof lengths 512 to 1024 with linear or sigmoid weightsperform best. In the range of FPRs of less than 10%,the crafted vector C-1024 performs best, closely fol-lowed by the other variants from that range.
In-Depth Analysis of the Results for C-1024

With regard to the influence of weight functions, thedata shown in Figure 4b for C-1024 is also represen-tative for all vectors 512 and longer, which all exhibitvery similar diagrams. We observe that adding weightto lesser frequent API functions (i.e. higher offsets invector) seems indeed to make sense as it improvesperformance throughout the board (both for linear and

sigmoid weights). Frequency again seems to intro-duce noise for thresholds leading to lowFPRscenarios(< 5%), regardless of weights. We conclude that thebinary vector representation seems favorable over thefrequency-based representation.
We now continuewith a closer look at cut-point val-ues as well as reasons for False Positives and Nega-tives. For binary vector C-1024 with linear weights, athreshold of
• 0.18 leads to a TPR/FPR of 90.18% and 9.45%,• 0.22 leads to a TPR/FPR of 89.10% and 4.74%(closest distance to the (0,1) point),• 0.32 leads to a TPR/FPR of 86.55% and 0.99%,• 0.55 leads to a TPR/FPR of 80.72% and 0.09%.
We now analyze the FPs and FNs in detail, us-ing a threshold of 0.55 and thus providing a FalsePositive Rate below 0.1%. In this case, 409 FPs arefound. A total of 225 (55.01%) FPs affecting 19 fam-ilies are caused by confirmed code-sharing, i.e. re-lationships between distinct families in the Malpe-dia dataset, mostly caused by earlier code leaks.Among these are a cluster of 10 zeus-based families(Zeus, IceIX, Citadel, KINS, VMZeus, GameoverP2P, ...),and other families like ISFB/Dreambot, Pony/EvilPony,HLUX/Kelihos, and AlinaBot and its offspring.
Another 148 (36.19%) FPs affecting 36 families arethe result of sharing larger parts of statically linkedcode from standard libraries. The groups can be iden-tified: 15 families are written in Delphi and 3 writtenin Go, both languages known for massively linking li-brary code during compilation. The other 18 familiesare written in C/C++, but they also share significantparts of WinAPI functions: a strong set of about 50functions tied to statically linked functions from theMSVCRT. Many of these WinAPI functions are alsoamong these with the highest occurrence frequency,as analyzed in Section 3.2.
Also, 8 FPs in 5 families were made with ApiVec-tors with less than 20 entries (as few as 3), whichobviously results in inaccurate results that should beavoided.
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The remaining 29 (7.09%) FPs are the most in-teresting. A total of 20 FPs with matching scoresfrom 0.55 to 0.88 are between malware families thathave been attributed by various analysts to the same11 APTs, with APT1, APT28 and Lazarus being mostprominent. Additionally, all of those tools are alsoconsidered private, i.e. their source is not availableto other malware authors for reuse. Binary diffingshowed that these tools do not necessarily have sig-nificant code overlap but seem to have similarity in thechoice of WinAPI functions for different tasks, suchas network connectivity or information gathering. Webelieve that in these cases, the authors "handwriting"may actually show to some degree through their code.This means that the technique could actually serve inthe context of attribution, e.g. as one feature in a largerfeature vector. The other 9 cases are also exclusivelybetween families that have to be considered semanti-cally similar: 2 RAT and 3 ransomware families. Thisshows that the presented technique to some degreealso captures similarity in capability of programs.
With regard to False Negatives, a total of 271 arefound for threshold 0.55. They can be categorized intothree groups that we now analyze in more detail.
129 (47.60%) samples in 83 families do not exceedthe threshold although there are theoretically match-ing samples available. We investigated this moreclosely and noted that in most cases the timestampsbetween available samples would span longer periodsof time (up to several years) in which the evolution ofthe codebase changed so much that the WinAPI us-age drastically changed in the process. For example inthe malware family Qadars, with a certain version anAPI obfuscation scheme was introduced, while fami-lies UrlZone and Geodo were refactored into multiplemodules over time, leading to a significant change intheir WinAPI usage.
120 (44.28%) samples in 54 families are the resultof how the data set is labeled. BecauseMalpedia doesgroup associatedmodules like droppers, loader, or plu-gins along the families, these get matched againstthe main payload code. Because these modules of-ten have a completely different code base and usageof WinAPIs, they technically cannot be compared andshould be ignored in this evaluation.
20 (7.40%) samples in 12 families produce inaccu-rate matches because they have few (20 or less) im-ports, similar to the case with FPs.
If we completely disregard the threshold valuesand instead look at the Precision at Position 1 metric,our method still correctly classifies 86% of the sam-ples, solely based on WinAPI import information.
To summarize, the analyzed ApiVector C-1024 ap-pears to be a decent configuration to be used for mal-ware classification. Using a threshold between 0.32and 0.55 leads to a FPR between 1% and 0.1%, whichshould allow for robust identification results. It ap-pears worthwhile to further investigate the exact setof WinAPI entries that are affected by statically linkedcode and adjust their weight accordingly. Also, limiting

application of the method to vectors of a given mini-mum size seems reasonable.
3.5 Comparison with ImpHash and Imp-

Fuzzy
After evaluating the matching performance of ApiVec-tors in isolation and determining an optimal pa-rameter configuration, we evaluate the methodologyagainst two popular related approaches: ImpHash and
ImpFuzzy. Both of thesemethods work by extracting astring representation of the import table as defined bythe PE/COFF [26] standard and then deriving a check-sum which is used for matching.The ImpHash of a file is calculated by generatingthe MD5 checksum of the concatenated entries of theextracted import table. Since MD5 is a cryptographichash, this approach only allows to find files that haveexactly the same constellation of import table, evendown to sequence of the imports. This further meansthat when comparing ImpHash values, there is no wayof determining a fine-grained similarity except for thebinary decision of equality. It has to be assumedthat this can impact the matching performance whenused for malware identification because changes tothe code or even just recompilation of a program maypotentially lead to a different import table or order ofits entries. Both cases will prevent the sample frombeing matched to another sample of the same family.The improvement of ImpFuzzy over ImpHash (asthe name suggests) is the introduction of the fuzzyhashing algorithm SSDeep overMD5, which allows thecomputation of a similarity score. Now, even if two im-port tables, and thus their SSDeep checksum, are notcompletely identical, they may still achieve a value ex-ceeding a given target threshold. Because the orderof imports plays a role in checksum calculation, wehave extended our experiments to alternative versionsof ImpHash and ImpFuzzy with (alphabetically) sortedimport tables to investigate if this has an influence onthe results. Therefore, the following evaluation showsresults for both the original methods as well as ourmodification with sorted import tables.

Figure 5: Classification Performance of ApiVector C-1024versus ImpHash and ImpFuzzy and their variants with sortedimport tables.
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In the following, we will discuss the results of
ImpHash, ImpFuzzy, and ApiVector C-1024, whichachieved the best overall performance in our previ-ous analysis. Because ApiVectors normally work onboth import table based and cached dynamic WinAPIreferences, we additionally analyze the performanceof our approach with data limited to import tablesto achieve a better comparison against the other ap-proaches. Figure 5 shows the obtained classificationperformances for all methods.As can be seen, ImpHash expectedly shows thelowest performance because of its strict matchingmethod. Interestingly, the performance of this ap-proach improves when being used with sorted importtables instead of the natural order encountered in thebinaries. It is also interesting that ImpFuzzy is alreadya great improvement over ImpHash, and sorting im-ports in this case does more harm than good, at leastat desirably low FPRs. We have again investigatedthe reasons for this. Apparently, ImpFuzzy is affectedby the same effects as ApiVectors, i.e. exceptionallysmall import tables as well as such programs makingextensive use of static linking, which shrouds the de-tectable characteristics of WinAPI usage to a certaindegree.Ultimately, ApiVectors perform best and give a sub-stantial improvement of matching performance basedon WinAPI information. It is also remarkable, that in-corporating the information of cached dynamic im-ports on top of import table information has significantinfluence on the matching performance. This showsthat the WinAPI functions referenced in this way carryhighly relevant information, potentially also for the in-terpretative work of analysts.Recalling the different representations for all threemethods, it is obvious that the size of an ImpHash is al-ways exactly 32 bytes (due to MD5), while the size of
ImpFuzzy and ApiVectors may vary based on the num-ber of entries. As shown in Table 6 the average lengthof ImpFuzzy is 54.6 Bytes, which makes it already con-siderably bigger than ImpHash. However, this increaseof size does allow proper matching beyond an equalitytest with binary outcome. Nevertheless, both ImpHashand ImpFuzzy do not preserve any information aboutthe imports used to construct their hashes and there-fore do not allow reconstruction of this data.As pointed out in Section 2.2, for ApiVectors weonly discard likely dispensable information during theconstruction of ApiVectors and the vector configura-tion C-1024 has an average API coverage of 86.7%(section Table 4). Apart from that, the informationabout which references to Windows API functionshave been discovered by ApiScout (i.e. both static ref-erences from the import table and cached dynamicimports) are preserved in the compressed vector andcan be fully reconstructed. The mean size for C-1024ApiVectors is 74.8 bytes. While ApiVectors are just20 Bytes bigger than ImpFuzzy on average, they main-tain the majority of information in a recoverable way.Additionally, the classification performance was eval-uated to be much better than those of ImpFuzzy and

ImpHash, which in our opinions easily justifies the big-ger size and shows that ApiVectors can serve as agreat feature in malware classification.

4 Related Work
In this section, we summarize relatedworks onWinAPIimport recovery, WinAPI import-based similarity analy-sis (both static and dynamic), and visualization ofWin-dows API data.Sharif et al. [5] have presented a similar method forresolvingWindows API references based in Virtual Ad-dresses that they limited to call targets derived fromdisassembly. They used it in the context of a recon-struction step in their unpacking framework Eureka.The de facto standard for import recovery amongmal-ware analysts is ImpRec [27] and its open-source pen-dant Scylla [4]. Both tools primarily aim at dynamicallylocating the IAT during the unpacking process, enu-merating the respectively loaded DLLs export tables,and rebuilding an import table based on this informa-tion. Kotov et al. [28] recently also proposed a newmethod to analyze calls to the Windows API based onthe composition of stack arguments.

ImpHash [7] was introduced by Mandiant as amethod for hunting similar samples and is the refine-ment of a technique mentioned in an earlier FireEyereport [29]. The basic idea is to concatenate the en-tries of a given PE files import table and calculate theMD5 hash over the resulting string. This techniquehas since also been adapted to Mach-O binaries un-der the name SymHash [30]. ImpFuzzy [8] has beenproposed as an improvement for ImpHash. The ba-sic methodology is identical (concatenation of importtable entries) but instead of MD5, the fuzzy hash SS-Deep [23] is used. Jang et al. [15] presented BitShred,an approach to encode malware samples as high di-mensional feature bit vectors. Windows API calls areamong the dynamic analysis based features used andfor calculating similarities, they also used the Jaccardindex.Rieck et al. [1] dynamically extracted Windows APIcall sequences using a sandbox and then apply ma-chine learning to train a behavior classifier. Similarly,Fujino et al. [31] extracted API calls through dynamicanalysis using a sandbox in order to derive similar-ity of executions. They first mapped the individualAPI calls to a normalized representation and then, us-ing text-mining techniques, they extracted a featurevector used for clustering similar samples. Fredrik-son et al. [32] presented an approach to automaticallyderive WinAPI-based specifications for discriminative,potentially malicious behavior from execution traces.Alazab et al. [33] presented a detection method basedon structural and behavioral features of malware, in-cluding Windows API usage. Additionally, Alazab etal. [34] introduced an approach to map Windows APIfunctions to potential malicious behavior. Zwangeret al. [35] mapped Windows Kernel API functions tosemantic classes and presented a static analysis ap-
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proach to detect rootkits based on the occurrence dis-tribution of these classes.Trinius et al. [36] used treemaps to visually presentpatterns of occurrence frequency for Windows APIcalls observed in sandbox runs. Gove et al. [37] cre-ated SEEM, a system to explore and compare featuresof multiple malware samples. Among other things,they mapped Windows API functions to capabilitiesand use bit vectors for visual comparison.

5 Conclusion

In this paper we made four contributions. Firstly, wecreated ApiScout, a method to recover API usage in-formation from memory dumps. It is capable of han-dling dynamic imports and does not need a live pro-cess environment. This leads to ApiScout redefiningthe possibilities in API usage information recovery bysurpassing the capabilities of former state of the arttools ImpREC and Scylla.Secondly, we defined ApiVectors, a way to effi-ciently store and compare Windows API information.It enables analysts to do a cursory assessment of po-tential behavior of a binary as well as similarity analy-sis of API usage across binaries.Thirdly, we researched 589 distinct malware fam-ilies from the Malpedia corpus regarding their APIusage. We showed that all families combined usenot more than around 4500 API functions. Addition-ally, our extensive evaluation of the similarity assess-ment and matching performance of ApiVectors pro-vides valuable insights into the possibilities and limita-tions of (purely) WinAPI-based static malware classi-fication. For example, we showed that for the majorityof malware families the set of used WinAPI functionsis characteristic, except for only a few cases in whichbinaries with large parts of statically linked libraries(using programming languages such as Delphi or Go)will negatively impact the matching performance be-cause they introduce a large common set of WinAPIfunctions they collectively depend on. With regard tothe results, ApiVectors identify about 86% of samplescorrectly, which is a significant improvement over thecurrently used approaches ImpHash and ImpFuzzy.Last but not least, we publish both, ApiScout andApiVectors, as a production-ready Python library to-getherwith a reference set of ApiVectors formore than700 malware families. We will also make our evalua-tion framework available to enable reproduction of ourexperiments and results.System API usage information has always beena core asset for in-depth analysis of malware. Inthis field, ApiVectors enables the assignment and vi-sualisation of semantic classes to APIs in binaries.This can easily be included in static analysis tools likeIDA Pro and should lead to easier orientation in a bi-nary for an analyst. Furthermore, we hope to haveshown that it is also a very valuable feature inmalwareclassification that is worth more research. It should

even be a good asset in additional contexts like author-ship analysis and attribution. The threat actors APT1,APT28, and Lazarus Group could be a good study ob-ject for such research since their extensive sets of ex-clusive tools are well documented.
Acknowledgment: The authors would like to ex-press eternal gratitude to the Shadowserver Founda-tion for continuously supporting malware research.We would also like to thank the anonymous reviewersof Botconf as well for their valuable feedback.
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