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Abstract

For more than a decade now, a perpetual in-flux of new malware samples can be observed.To analyze this flood effectively, static analy-sis is still one of the most important methods.Thus, it would be highly desirable to have anopen, freely accessible, curated, and cleanly la-beled corpus of unpackedmalware samples forresearch on static analysis methods. In this pa-per, we introduceMalpedia, a collaboration plat-form for curating a malware corpus. Addition-ally, we provide a baseline for a cleanly labeledmalware corpus consisting of 607 families di-vided into 1792 samples. This corpus offersa plethora of possibilities for researchers, in-cluding using it as a testbed for evaluations ondetection and analysis methods, quality assur-ance for classification, and contextualization ofnew malware.To ensure the quality of our corpus, weadapted the requirements by Rossow et al. [1],derive specific requirements for the context ofstatic malware analysis, and evaluate our cor-pus against them.Based on our corpus, we show that lookingbeyond packers dramatically reduces the sizeneeded for a corpus to be representative, as thenumber of distinct malware families and ver-sions after unpacking is orders of magnitudesmaller than the number of unique packed sam-ples. Additionally, we perform a comprehen-sive study of the Windows malware in the cor-pus, scrutinizing its structural features. Thisanalysis clearly illustrates that Malpedia offersa wealth of information, readily available for in-depth investigations.
Keywords: malware corpus, malware analysis

1 Introduction

It is a well-known fact that the number of registeredunique malware samples observed since 2005/2006has drastically increased, and currently sits at almost700 million samples as e.g. tracked by AV Test [2].This is a direct consequence of the common use ofso called packers, auxiliary programs that contain rou-tines such as compression or encryption algorithmsused to alter the appearance of the respective payloadcode in order to protect it against detection or analy-sis. In fact, it can be assumed that the actual numberof malware families or versions is significantly belowthese figures. Nevertheless, these observations canbe taken as a symbol for the massive gain in impor-tance of malware over the last decade, be it as a toolfor digital crime or in the context of state-sponsoredactivities.
The overwhelming number of samples and its fast-paced growth has strong implications on malware re-search. They lead to a high demand for advancedmethods to detect, analyze, and contextualize mal-ware. While researching such methods, it is of ut-termost importance to have representative data forevaluation available. Rossow et al. [1] have shownthat in past academic studies there has been a lackof comprehensiveness and representativeness in thedata used. This renders academic research less ef-fective.
Ideally, researchers would have access to an inde-pendent, pooled resource that provides themwith con-fidently labeled, unpacked reference samples for mal-ware families and versions, alongside available metainformation such as pointers to analysis reports or de-tection capabilities such as accurate YARA rules. Our
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evaluation shows that there is in fact huge redundancyin packed samples versus unpacked reference sam-ples for families and versions. Thus, such a corpuscould likely be distilled down to a couple thousand in-stead of many hundred million files.To address the above-mentioned situation, in thispaper we introduce an independent platform called
Malpedia. It allows malware researchers to contributeto a centrally curated, free corpus. Initially, it of-fers access to a corpus we created since 2015, span-ning around 1800 cleanly labeled samples represent-ing more than 600 families for several platforms, in-cluding Android, macOS/iOS, Linux/ELF andMicrosoftWindows.To show the usefulness ofMalpedia and the corpusin its current stage, we conduct a comparative studyon several characteristics across the families of Win-dows malware archived at the time of writing. Thisstudy leads to the following core results:• Packers mostly serve as an initial barrier againstdetection.• The number of unique unpacked samples isorders of magnitude smaller than the one ofpacked samples.• Unpacked samples can be conveniently treatedwith methods of static analysis.• The information extracted even with just cursorymethods already gives an interesting insight inpreferences and choices of malware authors.We implement our comparative analysis in such away, that it can be continually executed over the grow-ing data set in the future and provide updated resultsvia the web portal found at https://malpedia.caad.
fkie.fraunhofer.de.In summary, we make the following contributionswith our paper:• We define a set of requirements that malwarecorpora intended for static analysis should fol-low.• We introduce a vetted collaboration platformwith the mission to curate a reference mal-ware corpus, providing unpacked and dumpedsamples to specifically address static analysisneeds.• We provide a malware corpus for free to the re-search community.• We perform a comprehensive, quantitative staticanalysis of structural features across 446 fami-lies of Windows malware.• We show that it is viable to assume that pack-ers serve mostly as an initial barrier and beyondthis, the number of distinguishable families andversions is magnitudes smaller than the numberof unique samples encountered in the wild.The remainder of this document is structured asfollows. Section 2 specifies requirementswhich amal-ware corpus optimized for static analysis should fol-low. Section 3 presents the way in which we haveimplemented these requirements to build our corpus,
Malpedia, and provides an outline of its current sta-tus. We use Section 4 to give insight into the design

of the platform that we have created to share the cor-pus with the community and with which we want tocurate it in the future. In Section 5, we use the cur-rent status of the data set to conduct a comparativestudy across various structural features, showcasingthe usefulness of the Malpedia corpus for static anal-ysis. Section 6 summarizes related work while Sec-tion 7 concludes the paper.

2 Goals and Requirements for a
Malware Corpus focusing on
Static Analysis

In this section, we first define general goals that a mal-ware corpus focusing on static analysis should fulfil.We then focus on requirements to ensure that acorpus is created towards these goals. For this rea-son, we recapitulate the guidelines to consider whenplanning and executing malware experiments, as de-fined by Rossow et al. [1] in 2012. After checking theirapplicability for this special case, we rephrase and ex-tend these aspects and combine them into our own setof requirements.

2.1 Goals

The primary goal of any malware corpus should be tocontain representative data. Ideally, it should coverlonger periods of time within the malware landscape,in order to allow comprehensive measurements, re-flecting changes over time. In that sense, it should alsonaturally be updated as necessary to keep up with thefrequent developments as encountered when dealingwith malware.Furthermore, the corpus should provide the data inan easily accessible format. We believe that providingsome verified unpacked format of the samples adds ahuge benefit over just providing their original state (beit packed or not). As the corpus described here is in-tended to be specifically suited for static analysis, thisallows to directly orientate analyses from a viewpointbehind the classical packer-barrier. Just as important,a malware corpus should provide rich meta informa-tion, at the very least accurate labels, in order to betterjudge and classify findings derived from it. Note thatthe packer-barrier has a strong presence in essentiallyevery malware feed or data set currently available, andmeta information is usually limited to detection labelsas provided by anti-virus software.Another goal should be that such amalware corpusis a resource equally useful for practitioners to ensureit is being reviewed for relevance from different per-spectives. By providing vendor-neutrality in its cover-age, it could also serve as a consensual ground-truthamong malware researchers, both for naming in theconcrete case and as a source for the verification ofidentification measures in general.
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2.2 Adoption of Prudent Practices

Rossow et al. [1] defined their set of guidelines in awaythat they would be applicable for a wide range of ex-periments involving malware. The guidelines addressevaluations of techniques for detection, classification,and behavioral analysis, based on dynamic, static, orcombined analysis methods.
This paper focuses specifically on the creationof a malware corpus optimized for static analysis.We therefore review the applicability of these guide-lines, selecting the relevant subset that we consecu-tively include into our requirements for such a corpus.Rossow’s guidelines are grouped into 4 categories:correctness of the data set, transparency, realism, andsafety.
First, with regard to the correctness of data sets, itis highly relevant to balance overmalware families andeven platforms as malware has drastically diversifiedover the last years (cp. 2.3.2). Environment artifactshave only minor impact in the context of static analy-sis and they do not have to be addressed beyond doc-umentation (cp. 2.3.5). Generally, goodware can be ig-nored since the goal is to compile a malware corpus.In the same way, there should be no side effects oc-curring related to blending with benign data. Since nodetection or classification methods are proposed orbenchmarked, splitting of training and evaluation datasets is not applicable, similar tomonitoring ofmalwareand the system privileges that would be used for this.
Second, with regard to transparency, we considerannotations with family names and further meta dataas a core requirement for such a corpus tailored forstatic analysis (cp. 2.3.4). This requires that samplesas clean as possible, i.e. they are unpacked and iso-lated from potential packer fragments in order to allowfor their accurate identification (cp. 2.3.3). With regardto the sample selection policy, such a corpus shouldaim at both coverage in number of discernable fami-lies and versions to enable a comprehensive analysisof code evolution (cp. 2.3.1). The method and envi-ronment (including network connectivity) used to cre-ate the data for the corpus should be carefully docu-mented (cp. 2.3.5). Not relevant is the review of trueand false positives and negatives, since the require-ments address a pure data collection project.
Third, with regard to realism, a corpus should aimat providing a collection of prevalent and timely mal-ware families (cp. 2.3.1), including being kept up todate (cp. 2.3.6). This also ensures relevance for real-world applications in which the corpus may be usedlater on (cp. 2.3.1). The provision of appropriate mal-ware stimuli in the sense of the corpus can be trans-lated into ensuring that all modules, e.g. for differ-ent platforms or bitness, or providing additional func-tionality are extracted alongside in the unpacking pro-cess (cp. 2.3.3). Generalization of results from an OSversion or providing Internet access is again not appli-cable as these requirements do not address an exper-iment in itself.

Fourth and finally, safety and with that the contain-ment policy ismostly of importance for the further dis-semination of the resulting corpus (cp. 2.3.6).

2.3 Definition of Requirements

Having reviewed the prudent practices for reasonablyapplicable components, we now formulate a set of re-quirements specifically tailored for a malware corpusfocused on static analysis.

2.3.1 Representative Content

The most important requirement for a corpus is to berepresentative. This means that the selection of sam-ples contained in the data set should be prevalent andsuitable for the deduction of results that are of real-world relevance.
Another requirement in this context is to favor qual-ity over quantity. In this regard, the intention is tostrictly avoid redundancy in the samples contained,from the perspective of discernable malware familiesand versions beyond the packer-barrier. This is a vi-able requirement since the focus is on static analy-sis, and since unpacked versions of the samples areprovided, de-duplication can be applied. Barabosch etal. [3, 4] showed that under given circumstances evensmall data sets of carefully selected samples can yieldrepresentative results.
This matches our own experiences, motivated bythe following example: In cooperation with Shad-owserver, we identified more than 80.000 samplesof Citadel since 2013 and performed datamining ontheir botnet configurations. Over this time, we haveobserved more than 140 different unique identifierscorrelating to builder kits, underlining its prominenceamong criminal actors at that time. However, all of thesamples we observed can be represented by a mere21 distinct versions, achieving a data reduction fac-tor of 3,800x for this family with respect to this view-point. We observed similar factors for other familiesanalyzed in a similar way, for example: TinyBanker(5,700x), Asprox (5,500x), VMzeus (471x), and KINS(105x).

2.3.2 Cross-Platform Orientation

Nowadays, the existence of malware for many differ-ent hardware platforms has been proven. With thetrend of embedding technology into various objects ofeveryday live, it is more than likely that multi-platformorientation will become more and more important.Therefore, a malware corpus should not limit itself toa single platform. If desired, this reduction can beachieved artificially later on by selecting only parts ofthe corpus.
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2.3.3 Unpacked Samples

To adhere to the goal of easily accessible contentsin the context of static analysis, it is required to pro-vide unpacked counterparts of the samples if neededand where applicable. This is essential to enablestatic analysis on the actual malware families’ code inthe first place. Additionally, these unpacked versionsshould be kept as free as possible from any packerfragments to not interfere with analysis.However, we want to adjust this requirement of un-packing for two reasons to focus on memory dumpsinstead.First, we think it is actually more beneficial to cap-ture malware in the way closest to how it is typicallynaturally encountered. Clean unpacked samples arerarely found in the wild and often a result of either anactor’s mistake or an analyst’s efforts. This leads usto instead consider an in-memory view of an unpackedmalware as a preferable option, which can be usuallyobtained by performing a memory dump.Second, this in-memory view is actually moregeneric and can even serve as a form of normaliza-tion across families. Especially, as not every malwarespecimen can be transformed into an unpacked sam-ple in the traditional sense of a runnable on-disk ver-sion of itself. Some specimen exist only in a shellcoderepresentation thatmay be entirely dynamically loadedby other components.We believe that dumps are a favorable approxima-tion to unpacking for multiple reasons:• Dumping is drastically easier to automate, aswe do not aim for full reconstruction but rathersomething suitable for static analysis.• Since the corpus aims for packed and un-packed counterparts, omitting intermediatepacker/loader stages that could be addressedwith granular unpacking is an acceptable com-promise for higher automation success.• Dumps may contain additional runtime-only in-formation such as decrypted strings or API im-ports that ease analysis and provide additionalinsights. The imported libraries are also alreadymapped into memory.It is important to note that basic information aboutthe origin of the dump should be recorded as well, atleast the base address of the memory segment it wastaken from.
2.3.4 Accurate Labels and Meta Data

Another requirement is that samples should have an-notations, at least an accurate label regarding theirfamily membership. Where applicable, additionalmeta data should be recorded, such as version num-bers within the family. In cases where the unpack-ing/dumping yields multiple results of interest, thesehave to be annotated accordingly. Typical caseswherethis can occur are families that consists of multiplemodules or come with plugins, deployed from a singledropper file.

2.3.5 Documentation of Data Generation

It is important for a malware corpus to document howit was created, in order to enable accountability andreproducibility. In the first place, it should be trackedwhere the malware samples originate from. Further-more, if the corpus contains derived data (such asdumps), it is also necessary to document the appliedmethods and their configurations (e.g. environmentspecification, parameters).
2.3.6 Curation and Dissemination

Should the corpus be updated over time, then it is im-portant to ensure consistency in its structure and con-tent. For this reason, the content should be curated inthe same way it was originally created.Additionally, the data contained in such a corpusis potentially harmful for many computer systems. Itshould be only made accessible to parties that aretrusted and believed to be able to handle such a dataset with the required carefulness.

3 The Malpedia Corpus
In this section, we introduce the Malpedia corpus,which has been developed in line with the require-ments specified in Section 2. We first define our in-terpretation of the terms Malware Family, Unpacked
Sample, and Dumped Sample. Next, we explain our ap-proach for sample selection and our method to cre-ate clean memory dumps of malware. We continueby documenting our data storage format and give anoverview over the current contents at the time of writ-ing.

3.1 Terminology
Before explaining our methodology, we define somereoccurring terms as used in the context of Malpedia.
Malware family: We use the term malware family togroup all malware samples that from a developer’spoint of view belong to the same project, i.e. codebase. This also incorporates potentially existing ad-ditional components as used by the malware such astailored loaders or plugins. We are aware that this def-inition is not fully sound and carries fuzziness withregard to the origin and similarity of code as well asits potential authorship. But from our impression, thisultimately allows us to reflect the current consensusamong many practitioners. Furthermore, this defini-tion gives us some freedom to make a distinction be-tween the outcome of leaked source code (e.g. the off-springs of Zeus, Carberp, or Gozi) but also consolidaterewrites of the same project (e.g. GPCode).
Unpacked sample: An unpacked sample is a directrepresentative of the malware family itself, withoutpresence of any third-party code not related to its
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own code base that may have been applied post-compilation to conceal its identity. This does not ad-dress the removal of any staging or obfuscation asemployed by the family itself. Ideally, an unpackedsample is also in a state where it can be nativelystarted within its compatible operating systems, e.g.unmapped and with a correct entry point.
Dumped sample: We consider a runtime memory cap-ture of the malware during execution as a dumpedsample. In the majority of cases, this will originatefrom a memory-mapped process image with arbitraryinitialized dynamic data, e.g. Windows API functionimports or global variables.
3.2 Collection Approach
In Malpedia we want to prefer quality over quan-
tity. This means that increasing the coverage of un-packed/dumped samples for a new family is more im-portant than adding further samples for a known fam-ily. Instead of collecting asmany samples as possible,we put emphasis on the importance of verification forall samples before adding them to the corpus to main-tain a high degree of quality. By this, we hope to pri-marily increase the longitudinal coverage and achievetopicality in the data.Furthermore, we aim to prioritize prevalent mal-
ware families, thus favor malware families that arevery active and affect many users or high-value tar-gets over others. In the default case, it should be suffi-cient to choose single representative samples per ver-sion for basic coverage. This also drastically reducesthe amount of data required to meaningfully representeven lines of evolution for malware families.Finally, we want to provide means for quality as-
surance by striving for complete YARA coverage. Pre-cluding false positives and negatives across thewholedata set on the one hand can serve as a proof of labelaccuracy while on the other hand creates a useful toolfor malware identification.The vast majority of samples included in Malpediaare also found in other repositories, such as VirusTo-tal.Using this orientation, we hope to create a rep-resentative corpus (2.3.1) without platform limita-tions (2.3.2), and with accurate labels (2.3.4) for allsamples.
3.3 Dump Creation and Family Identifica-

tion
We decided to centralize and normalize the dump cre-ation (even for future samples) by using virtualization.This allows us to always resort to the sameVM imagesand state to ensure consistency across all dumps. Sofar, we only perform dumps for Microsoft Windowsand limit ourselves to two versions: Windows XP SP3and Windows 7 SP1 64bit, as they cover all our cur-rent needs. This preference for older OS versions is ex-plained with the fact that we want to ensure maximum

execution success of samples that may be impairedby modern security mechanisms embedded into re-cent versions of Windows. Additionally, all availableMicrosoft Visual Studio (MSVC) and .NET runtimesare installed. To further ensure maximum compati-bility with packers, we have taken (not publicly docu-mented) steps to harden the VM against detection.Sticking to a limited set of VMsnapshots yields sta-ble and known environment parameters, such as userand computer names, Volume IDs, and Windows DLLversions. The latter enables the use of ApiScout, atechnique we present in section 5.3.1, on all dumpscontained in Malpedia. This method will be analo-gously expanded to also cover ELF and potentially ma-cOS/OSX families, while Android and iOS malware willlikely be provided as unpacked samples, if applicableand necessary.In order to create dumps, we currently stick to thefollowing procedure. We first attempt to simply startthe sample of interest and wait for a period of time(by default 60 seconds, prolonged if necessary). Afterthis time, we perform a full differentiation of allocatedmemory versus the clean state and dump all sectionsthat have changed. We then use a set of heuristics toaid our following manual inspection in order to selectthe reference dumps for the sample. In cases wherethis method fails, we use manual in-depth static anddynamic analysis, to guide the unpacking process inorder to yield an acceptable result.The actual memory dumping is then performed us-ing a kernel driver to avoid interference with hooks po-tentially set by the malware. Regardless of how theresulting memory dump was produced, we clean thedata (i.e. remove packer fragments) if necessary, ade-quate, and possible.Family identification is then performed using thefollowing steps sorted by priority: applying existingYARA rules, verifying the classification that may havebeen available along the sample (e.g. analysis reportor blog post), and using similarity analyses against thecorpus of existing unpacked files and dumps.We believe that these measures sufficiently fulfillthe requirements of providing unpacked files (2.3.3),accurate labels (2.3.4), and documentation of datageneration (2.3.5).

3.4 Storage and Organization

We use a hierarchical folder structure to project thedata into families and versions. On top-level, we gen-erally use a nomenclature of 〈platform〉.〈name〉, where
〈platform〉 may be win, osx or similar and 〈name〉 istypically one of the identifiers as given by third partiesor unidentified_〈number〉 where no such name canbe identified. In cases of multi-platform malware, weresort to an identifier of the filetype or programminglanguage such as jar or js.Samples are stored by their SHA-256 hash, andassociated unpacked or dumped files are stored as
sha256_unpacked and sha256_dump_〈addr〉 respec-
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tively, where 〈addr〉 is the dump’s originating baseaddress extended to the addressing size, such as
0x00400000. In some cases, multiple dumps will betaken, to also account for additional modules de-ployed to memory or anti-analysis tricks. Dependingon the concrete needs, subfolders may be used belowthe family identifier to indicate a version (e.g. by in-ternal scheme, compilation timestamp if it proves tobe reliable, or a first seen date) or component type(loader, payload, modules, ...). Furthermore, meta dataand YARA rules are stored along the samples.

3.5 Data Set Status

All of the following evaluations refer to the Malpe-
dia repository state as of October 31, 2017 (commit
bf6532c). At this time, the corpus contains a total of1792 samples inventorized into 607 families.• 505 families for Windows• 34 families for Android• 29 families for macOS/OSX• 24 families in ELF format• 2 families for iOS• 1 family for Symbian• 12 families that are scripted or for other reasonspotentially multi-platformWith regard to their state of unpacking and dumping• 1149 (64.12%) samples are dumped (and partiallyalso unpacked)• 221 (12.33%) samples are just unpacked• 422 (23.55%) samples are neither dumped or un-packedSo far, only Windows has been addressed with dumps,where 446 (88.32%) of the families are covered withat least one dump. Out of these, 98 families havedocumented use by one or more Advanced Persis-tent Threat (APT) actor groups. The total number ofdumps is 1208 as for some samples multiple stages,e.g. loader and payload have been dumped.With regard to YARA, 255 rules for 150 families ex-ist, covering 907 (50.56%) samples. The long termgoal is to achieve perfect coverage across the full cor-pus.

4 The Malpedia Platform

In this section, we present the platform that we havecreated to maintain the corpus in the future. Basedon the feedback on a textual draft that was gatheredfrom our peers in the CERT and research community,we explain its primary implementation aspects. Thisplatform is our way of performing curation and con-trolling dissemination, as required (2.3.6).It is important to note that Malpedia is operatedand all data that is collected in it is made availableunder Creative Common’s CC BY-NC-SA license, in or-der to express our vision of creating an independent,reusable resource.

But before going into details, let us first define thephilosophy behind Malpedia.
Malpedia’s Mission Statement: The primary goal of
Malpedia is to provide a community-driven, indepen-dent resource for rapid identification and actionablecontext when investigating malware. Openness to cu-rated contributions shall ensure topicality and an ac-countable level of quality in order to foster meaningfuland reproducible research.
4.1 Implementation of Trust Mechanisms
The data of which Malpedia constitutes contains po-tentially sensitive and dangerous contents. It is there-fore warranted to ensure a limitation of access to anaudience aware of the risks and experienced in han-dling such data. We have decided to introduce a vet-ting process as access control measure and adopt theTraffic Light Protocol (TLP) [5].We consider the majority of meta data such asnames, aliases, referenced reports, and aggregatedstatistics as not critical and make them publicly avail-able (TLP:WHITE), allowing them to be used as a ref-erence.Elements identifying concrete samples (hashes)and the actual malicious code itself should be with-held from public access (TLP:GREEN) in order to nottip off the attackers or harm bystanders. Means of de-tection such as YARA rules may be publicly sharable,depending on their source of origin but can also be fur-ther limited in distribution (up to TLP:AMBER).These are best practices that have proven of valuebased on experiences gathered in trust groups such asclosed-door mailing lists or conferences. For this rea-son, Malpedia will be operated in favor of establishedtrust-mechanisms: The user base will be grown in aninvite-only way where users will have to be vetted by aportion of the existing users in order to have their ac-count activated.
4.2 Ensure High Standards for Contribu-

tion Quality
Tomaintain a high quality, contributionswill only be ac-cepted from registered users but not without furtherreview. We use a double blind peer review model tovalidate the quality of submissions before integratingthem into the corpus. We require at least two verdictsper submission. Registered usersmay volunteer as re-viewers.
4.3 Automation Support
The tool landscape for malware research has signifi-cantly grown over the last years. To maximize the use-fulness of the platform, the ways of interaction as pro-vided through the website will also be made availablevia a REST API to allow easy integration for third par-ties. Additionally, direct access to the full corpus willbe offered to registered users.
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4.4 Baseline Data Set
Starting from scratch would likely be deterrent to thewillingness of users to contribute. Therefore, we havebootstrapped Malpedia with reference data collectedin numerous malware investigations conducted overthe last five years. Additionally, we have systemat-ically crawled publications (analysis reports, papers,blog posts) ofmajor institutions, such asAVand threatintelligence companies and isolated samples as repre-sentatives for more than 600 families. An overview ofthe contents of this initial data set is given in Section 3and a comparative analysis of the contained Windowsmalware is given in Section 5.
4.5 Contextual Enrichment: Meta Data
Many malware families are given multiple names, forexample due to parallel discovery, company policy, orsimply personal taste. On many occasions, this hascaused unfavorable confusion within the malware re-search community.With Malpedia, we want to provide a central re-source for tracking as many of these respectivealiases as we can identify and support them with con-crete samples to build consensus on. Where appli-cable, we also track recorded links between malwarefamilies and threat actors, for which we also want toprovide a bookkeeping of aliases. To avoid duplica-tion of effort, we integrate and feed data back to theregisters administered by the team of the Malware In-telligence Sharing Platform (MISP) [6].Additionally, we think it is beneficial to also collectreferences to published research onmalware families,including analysis reports, blog posts etc. to enrich thesamples with contextual information. We hope thatthiswill provide analyst’s with information to bootstraptheir own analyses on.Finally, we have structured our suite of evaluationtools used in Section 5 in a way that it allows us toeasily integrate it directly into the Malpedia web ser-vice. This allows us to continually provide updates oncomparative assessments on basic structural proper-ties of all the malware families’ code bases as the cor-pus grows.

5 A Comparative Structural Analy-
sis of Windows Malware

In this section, we focus on the subset of Windowsmalware to perform a comparison of selected struc-tural properties. The families are listed in the Ap-pendix, Table 6. We use our chosen normalized repre-sentation of dumps as motivated in Section 3.3. Theanalysis is split up into three parts.The first part focuses on PE headers. Based on ourexperience, a majority of packers will simply unwraptheir carried payload to memory in its original form,which allows us to inspect the actual PE headers of

the original malware families. Apart from finding outin howmany cases we have headers available, we cancheck and compare many header fields that may berelevant for analysts, such as the presence of headermagics (such asMZ/PE), if the binary is for 32/64bit, ifit is a DLL vs. an EXE, security properties, and so forth.Of special interest are also compilation timestamps,as these allow us to measure the age of our corpusand provide temporal context within the developmentof families. Features that characterize the workflow ofmalware authors are hints on languages and compilerversions used, including Rich Headers, which can givesome insights on the system environment that the pro-gram was compiled in [7].The second part examines properties of the ma-licious code itself. However, we limit ourselves to avery cursory analysis and will cover this topic in-depthin a dedicated follow-up publication. We use our owndisassembler SMDA, which is optimized for functioncoverage in arbitrary code buffers (such as the dumpsfound inMalpedia) in order to derive key metrics of thecode graphs. Apart from that, we have a closer lookat the debugging information available and how this isused e.g. for naming of malware families.The third part gives an overview of Windows APIusage. We first classify three different import stylesand then use ApiScout [8], a tool we developed to stat-ically identify references to the Windows API. Over thedata extracted, we perform a frequency analysis sim-ilar to Zwanger et al. [9] to measure the popularity ofDLLs and API functions.While we believe that we already have decentcoverage, be aware that these are our initial resultsand that we will continually publish future statisticsthrough our platform as the corpus grows.

5.1 PE Header Analysis

The first analysis part focuses on data contained in PEheaders. As PE headers are the blueprints of Windowsexecutables, they contain a lot of meta data that canbe potentially useful e.g. for initial triage or as an out-linewhen starting to analyze themalware in-depth. Westart by assessing the general availability of PE head-ers inmemory dumps because this determines the ap-plicability of further methods. Because headers areluckily available for 94.62% of the families considered,we continue evaluating a range of header fields com-paratively. This includes general characteristics, thecompilation timestamp, linker information, and struc-tural information such as the presence of data direc-tories.For our analysis, we avoid the usage of PE parserlibraries because our input data are (potentially mod-ified) memory dumps and not clean on-disk versionswith intact header magics, which most parser li-braries expect. Alternatively, we use a method we call
pe_check. It is built around the idea of specificallyavoiding the obvious headermagics and instead locat-ing a composition ofmandatory header fields as orien-
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Figure 1: PE header fields considered in the analysis. Here: PE32 variant.

tation points. Based on these we then deduce the po-sition of the file and optional header to subsequentlydirectly access the fields of interest by their offset, asshown in Figure 1.The results of this analysis are grouped by the in-dividual tests and shown in Table 1. We list resultsboth for individual samples and grouped by families.In cases where samples of a family give a conflictingresult, we chose the majority value.

5.1.1 PE Header Availability

We start our evaluation with a group of tests cen-tered around PE header availability. First, we perform
pe_check and to our surprise, 422 of 446 families(94.62%) pass this test. Looking closer, we notice thatwe cover 3more familieswith pe_check than followingthe usual routine of locating headers by theMZmagic.This would be e.g. the method the popular Python li-brary pefile.py follows, whose result we list for com-parison.In total there are only 86 samples in 30 familiesthat do not pass pe_check. Manual inspection of thesecases result in the following observations: for 39 sam-ples (18 families) we find headerless position indepen-dent shellcode, 17 samples (5 families) have a nulledheader (determined by size), 16 samples (7 families)directly start with referenced data, 15 samples (5 fami-lies) start with an self-constructed Import Address Ta-ble (IAT) and 3 samples (2 families) perform an XORoperation over their header (which could technically berecovered). The disparity of 30 versus 24 families (asshown in Table 1) is caused by some families havingfewer samples withmodified header thanwithout, trig-gering the majority decision.For 403 families (90.36%)we also locate one of thefollowing DOS Strings:

• This program cannot be run in DOS mode• This program must be run under Win32• This program must be run under Win64
On a side note, we have observed that the DOS string"This program must be run under Win32/Win64"seems specifically tied to Borland compilers.Rich Headers, which can provide additional infor-mation in this context [7], are present for 272 (60.99%)families and are covered in Section 5.1.4.

5.1.2 General Characteristics

Next, we focus on a range of general characteristics.
First, we look at architecture required as deter-mined by the PE header machine field. The vast ma-jority of samples and families in Malpedia are trackedas 32bit, with occasional 64bit versions. Only GHOLE,a modified CoreImpact version used by threat actorRocketKitten, is currently tracked exclusively as 64bit.We think this number is mostly a result of our currentdumping procedure andwill shift over time, aswe haveunpacked 64bit variants or modules for 16 families.
Surprisingly, as much as 26.91% families’ corecomponents exist as DLLs, often being staged andloaded by additional code.
With regard to the execution mode as defined bysubsystem, a majority of samples have been com-piled to use GUI (85.92%) versus console (6.95%). Thismakes sense, as it has the advantage of being less no-ticeable by not running in a blocking fashion, spawningan additional command shell window.
A closer look at the minimum OS version requiredto execute the samples, 92.51% of these values aredistributed between version 4.0 (Windows NT) and 5.1(Windows XP), despite the fact that most of our sam-ples have been observed in 2014 and later. 30 families(7.11%) require a version of Windows Vista or above,with 11 of them having been observed in APT context.Our explanation is that this is a result of precautionby malware authors to have their tools as compatibleas possible with the typically unknown target environ-ment. It should also be noted that due to us using onlyversions up to Windows 7 (which is version 6.1), we donot have dumps included that strictly require a OS ver-sion higher than that. On the other hand, we have notobserved such malware yet, which would have beennoticed through execution failure during dumping.
Another feature that we have analyzed are the se-curity properties that have been activated, namely sup-porting SafeSEH, being compatible with No-Execute(NX) and environments supporting dynamic rebasingor Address Space Layout Randomization (ASLR). Asshown in Table 1, SafeSEH is supported by 73.09% ofthe families. ASLR with 57.62% is a little more com-mon than NX with 52.47% (family-level). Both featurescombined are supported by about half (49.10%) of thefamilies.
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Samples Families
Sections Test True (%) False (%) n/a (%) True (%) False (%) n/a (%)

5.1.1
pe_check 1122 (92.88) 86 (7.12) 0 (0.00) 422 (94.62) 24 (5.38) 0 (0.00)
MZ Magic 1111 (91.97) 97 (8.03) 0 (0.00) 419 (93.95) 27 (6.05) 0 (0.00)
PE Magic 1114 (92.22) 94 (7.78) 0 (0.00) 419 (93.95) 27 (6.05) 0 (0.00)
DOS String 1003 (83.03) 205 (16.97) 0 (0.00) 403 (90.36) 43 (9.64) 0 (0.00)
Rich Header 766 (63.41) 442 (36.59) 0 (0.00) 272 (60.99) 174 (39.01) 0 (0.00)
pefile-parsable 1111 (91.97) 97 (8.03) 0 (0.00) 419 (93.95) 27 (6.05) 0 (0.00)

5.1.2, 5.1.3
32bit* 1117 (92.47) 5 (0.41) 86 (7.12) 421 (94.39) 1 (0.22) 24 (5.38)
DLL 341 (28.23) 781 (64.65) 86 (7.12) 120 (26.91) 302 (67.71) 24 (5.38)
SafeSEH 939 (77.73) 183 (15.15) 86 (7.12) 326 (73.09) 96 (21.52) 24 (5.38)
NX 529 (43.79) 593 (49.09) 86 (7.12) 234 (52.47) 188 (42.15) 24 (5.38)
ASLR 663 (54.88) 459 (38.00) 86 (7.12) 257 (57.62) 165 (37.00) 24 (5.38)
NX+ASLR 475 (39.32) 647 (53.56) 86 (7.12) 219 (49.10) 203 (45.52) 24 (5.38)
Valid Timestamp 1060 (87.75) 62 (5.13) 86 (7.12) 398 (89.24) 24 (5.38) 24 (5.38)

5.1.5

Export Table 264 (21.85) 858 (71.03) 86 (7.12) 98 (21.97) 324 (72.65) 24 (5.38)
Import Table 1056 (87.42) 66 (5.46) 86 (7.12) 400 (89.69) 22 (4.93) 24 (5.38)
Resource Table 610 (50.50) 512 (42.38) 86 (7.12) 293 (65.70) 129 (28.92) 24 (5.38)
Exception Table 5 (0.41) 1117 (92.47) 86 (7.12) 3 (0.67) 419 (93.95) 24 (5.38)
Certificate Table 18 (1.49) 1104 (91.39) 86 (7.12) 12 (2.69) 410 (91.93) 24 (5.38)
Base Relocation Table 864 (71.52) 258 (21.36) 86 (7.12) 310 (69.51) 112 (25.11) 24 (5.38)
Debug 192 (15.89) 930 (76.99) 86 (7.12) 99 (22.20) 323 (72.42) 24 (5.38)
Architecture 1 (0.08) 1121 (92.80) 86 (7.12) 0 (0.00) 422 (94.62) 24 (5.38)
Global Ptr 0 (0.00) 1122 (92.88) 86 (7.12) 0 (0.00) 422 (94.62) 24 (5.38)
TLS Table 62 (5.13) 1060 (87.75) 86 (7.12) 37 (8.30) 385 (86.32) 24 (5.38)
Load Config Table 317 (26.24) 805 (66.64) 86 (7.12) 141 (31.61) 281 (63.00) 24 (5.38)
Bound Import 6 (0.50) 1116 (92.38) 86 (7.12) 5 (1.12) 417 (93.50) 24 (5.38)
IAT 925 (76.57) 197 (16.31) 86 (7.12) 341 (76.46) 81 (18.16) 24 (5.38)
Delay Import Descriptor 39 (3.23) 1083 (89.65) 86 (7.12) 19 (4.26) 403 (90.36) 24 (5.38)
CLR Runtime Header 83 (6.87) 1039 (86.01) 86 (7.12) 64 (14.35) 358 (80.27) 24 (5.38)
Reserved 0 (0.00) 1122 (92.88) 86 (7.12) 0 (0.00) 422 (94.62) 24 (5.38)

Table 1: Summary of PE header field analysis, on sample and family-level of aggregation (*: False indicates 64bit).

With respect to the number of sections found,84.31% of the samples have either 3, 4, or 5 sec-tions. These correspond strongly to the most com-mon section names found: .text (89.22%), .data(80.66%), .reloc (78.43%), .rdata (70.68%), and
.rsrc (55.35%).

5.1.3 Timestamp Information

The next aspect we focus on is the temporal infor-mation available to us. We first measure the age ofthe current Malpedia corpus by looking up the datewhen samples have been first seen on VirusTotal (de-noted as TV T ) and then compare this information withthe compilation timestamp as found in the PE header(TPE).Out of the 1208 files used in this evaluation, 1173(97.10%) have a TV T value. As shown in Figure 2a,most of the samples have been seen first within thelast 4 years, as the values between 2013 and 2017make up 91.65%. While having less priority than keep-ing up with recent developments, we hope to close thegap of potentially relevant families of the past overtime.With this data at hand, it is now interesting toput the PE header’s compilation timestamp into per-spective. After filtering out 86 samples that failed
pe_check, we can filter out another 62 samples thathave a value of either null or the default Delphi times-tamp (1992-06-19T22:22:17). From those, we remove

another 30 samples where no TV T is available. Next,we apply two plausibility checks. First, we check if thetimestamp difference (TV T − TPE) is negative, whichwould mean the sample has been contradictingly ob-served on VT before it was compiled, which is the casefor 38 samples. Second, using the range of 2006-12-11(earliest TV T , a sample of Gozi) and 2017-10-11 (times-tamp of our corpus snapshot) we identify 43 samples(19 families) that fall outside of this range. Apart fromall of them having a timestamp difference (TV T−TPE)of 7 years or more, we did contextual searches on thefamilies to ensure that those timestamps are in factthe result of manipulations and that we can safely ex-clude them.
This leaves us with 949 timestamp pairs of TV Tand TPE , belonging to 367 families (82.29%), that arepotentially plausible. We have plotted their timestampdifferences (limited to one year, covering 314 families)in Figure 2b. 10.43% samples have been seen on VTwithin one day, 32.24% within 7 days, 48.78% withinthe first month, and 78.30% within the first year af-ter their compilation timestamp. Given that we didnot aim at finding the first (packed) sample for an un-packed equivalent, we believe that this still shows thatPE compilation timestamps are very often at least in ameaningful distance to their first seen date, relying onVirusTotal as a reference.
We have also looked closer at the remaining 206cases in which the difference between VT First Seenand the PE timestamp is longer than one year.
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(a)Malpedia corpus age, as indicated by VirusTotal first seendates (TV T ) of 1173 (97.10%) samples.
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(b) Difference between VirusTotal first seen date and compi-lation timestamp (TV T − TPE), 743 of 949 (78.30%) valuesshown (less or equal to one year).
Figure 2: Temporal information about the corpus.

We attribute 75 samples (47 families) more or lessconfidently to APT background. In these cases, filesare sometimes "published" to VT alongside reports.Others are related to leaks, e.g. ShadowBrokers (Dou-blePulsar, Fanny, Oddjob, ...) and exhibit a drasticallyaged timestamp.Another 59 samples (12 families) come from fam-ilies where it is publicly known or otherwise plau-sible that they are based on builders/configurators(Zeus, Citadel, Ramnit, GPCode, RATs like PoisonIvy,...). This allows for some of them to be used or appearyears later, hence having comparatively old compila-tion timestamps.For 26 samples (5 families) we can confirm forgerythat is also found across other header fields and as-sume it is plausible that their PE compilation times-tamps have beenmodified as well. These overlap withfamilies that had samples sorted out earlier when re-ducing timestamp pairs to plausible ones (e.g. Locky,Necurs).The remaining 46 samples (36 families) are nottrivially explainable. Their timestamp offset may bethe result of a variety of reasons, e.g. the systemwherethey were compiled on having massive clock-drift, thesamples having remained undiscovered/unsubmittedfor a long time, or the timestamps being forged aswell.
5.1.4 Compiler/Linker Information

A very interesting aspect in the context of the PEheader is actually the Major/Minor Linker informationfield, as itmay offer some insight into the toolkit prefer-ences ofmalware authors. In order to determine thesevalues confidently, we adapted the signature databaseof Detect-It-Easy (DIE) [10]. An overview of our resultsis shown in Figure 3.After de-duplicating on family-level, we note 513data points for 446 families. Out of 194 families wheremore than one sample is available, only 56 families

(28.87%) have samples being compiledwithmore thanone compiler/linker version. Malware authors seemto have a tendency to stick with their tool chains, aschanges here only occurred in case of full rewrites oftheir project, for examplewithGPCode andSakula RAT,which were both translated from C to Assembler. In allother cases, we only observed authors updating to amore modern version within the tool chain (2x withinMinGW/gcc and 49x within MSVC).No information about the tool chains used couldbe inferred in 48 (9.36%) cases, where no header wasavailable, or the version field was not plausible (i.e. be-ing nulled, obviously forged, or otherwise a result ofheader fragmentation).We know of only a single family being written andcompiled in Go: AthenaGo. Also, only for a single fam-ily GoAsm with Golink 0.40 was utilized (Sakula RAT).For 3 families, we inferred that they were directly builtusing Flat Assembler (FASM), skipping the linker step.Pelles C’ PoLink was used in 3 (0.58%) cases andMicrosoft Assembler’s (MASM) MIL was used in 12cases (2.34%). Please note, that both PoLink and MILmay also have been used in conjunction with FASM, asFASM optionally allows using an external linker suchas both PoLink and MIL.MinGW/gcc account for 17 cases (3.31%), beingsplit over 7 versions.Borland compilers were used in 29 (5.65%) cases,with the majority of them being Delphi (27). DelphiTurbo Linker 2.25 and gcc 2.25 share the same ver-sion number but are easily distinguished through therespective characteristics found in the code.The vast majority constitute families that werecompiled using various versions of Microsoft VisualStudio. They are tied to 401 (78.17%) data pointsover 10 versions. Looking at the distribution, we canmake two observations. First, a disproportional num-ber of families are seemingly compiled with the out-dated VC6, released in 1998. Possible explanations for
10 Daniel Plohmann, Martin Clauß, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape
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Figure 3: Distribution of compiler and linker versions, counted uniquely per family. Compiler groups (same color) are furtherdivided into versions. The gray boxes enclosing groups indicate the sum of of values for that group. The vast majority ofauthors apparently use Visual Studio to build their code, with Visual Studio 2010 being the most common version.

this are that VC6 links statically against msvcrt.dllper default, avoiding dependencies. On top of this,it is linking against the last DLL version (which hasthe status of a system DLL) before Microsoft’s policychange of requiring developers to ship the appropriate
msvcrt.dll version along their code (which lead to asituation commonly referred to as "DLL Hell").

Second, all other MSVC versions are distributedaround VS2010, slightly leaning towards older ver-sions. One explanation for this may be that many pro-grammers stick to an environment that they are famil-iar with, in the sense of "never touch a running system".

Next, we can incorporate the Rich Header [7] as anadditional measure to estimate the plausibility of theinformation given in the linker fields. For the 766 sam-ples in which a Rich Header is present (cp. Table 1),we find 735 (95.95%) of them having a linker field num-ber corresponding to a MSVC compiler. Drilling downon these, at least 721 (98.10%) also have a version-matching PID entry in the Rich Header, showing thatthis information is reliable in almost all cases. Weonly finddeviations for families, whereweearlier notedthat other header fieldswere likely forged (e.g. Necurs,Locky, and Lurk).

5.1.5 Data Directories

With regard to the presence of data directories, we no-tice that only Import Table (89.69%) and IAT (76.45%),Base Relocation Table (69.51%), and Resource Table(65.70%) appear in more than 50% of the families.Out of the 192 samples having a Debug Directory,163 (84.90%) contain references to PDB files, whichare handled more in-depth in Section 5.2.2.The presence of a Load Config Table indicates thepresence of a directory of known, safe Structured Ex-ception Handlers (SafeSEH, cp. Section 5.1.2), whichis the case for almost a third of the families (31.61%).Note that way more families (326 or 73.09%) havethe SafeSEH field activated but may not include sucha directory for a number of reasons, such as notusing Structured Exception Handlers, linking againstmodules not supporting SafeSEH, or being subsys-tem:console applications [11].An Export Table is found for 264 samples of 98(21.97%) of the families. An interesting field to look atin conjunction with Export Tables is the DLL field. Outof 341 samples being DLLs, only 239 (70.09%) exportfunctions, meaning that the ones without either have afully functional DllMain routine (which is officially dis-couraged by Microsoft) or get controlled through im-plicitly known function offsets. On the other hand, 25out of 781 samples (3.20%) being executables have an
Daniel Plohmann, Martin Clauß, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 11
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Functions BBlocks Instructions Function Calls
min 3.00 25.00 30.00 2.0025% 181.25 1437.25 9362.75 446.5450% 438.50 4261.83 23833.62 1377.0875% 1107.00 9765.78 54632.33 3593.75max 26360.00 337386.50 1848787.00 113008.50mean 1300.92 10954.50 63390.37 4582.13

(a) Control Flow Graph Statistics.

Functions BBlocks Instructions Function Calls
Functions 1.000 0.884 0.910 0.946BBlocks 0.884 1.000 0.992 0.941Instructions 0.910 0.992 1.000 0.960Function Calls 0.946 0.941 0.960 1.000

(b) Pearson Correlation Coefficient (PCC).
Table 2: Results of the cursory code evaluation across 382 families, averaged values per family (64 .NET families excluded).

Export Table, which is possible but unusual behaviouras well.The 64 families (14.35%) having a CLR RuntimeHeader are all .NET based and identical with those ex-cluded from the Code and Windows API usage analy-sis (cp. Sections 5.2 and 5.3).TLS callback tables are available for 37 (8.30%) ofthe families and 19 (4.26%) use Delay-Load Imports.Only 12 (2.69%) of the families are signed, with 8 ofthem being connected to APT activity.We have observed a Bound Import Table only forfamilies written in MS VisualBasic (5 families, 1.12%)and Exception Tables (0.67% of families) are onlyfound in families that also have 64bit binaries.The Architecture and Reserved Directories are ex-pectedly zero, in accord with the PE/COFF Specifica-tion [12], and a Global Ptr Table is also found in noneof the families.

5.2 Code Analysis

For code analysis, we use our own recursive disas-sembler called SMDA, which is based on Capstone [13]and specifically optimized for the disassembly of ar-bitrary code buffers, i.e. it is suited for dealing withmemory dumps as found in Malpedia. It implementsa semantically-aware method for Function Entry Point(FEP) localization, oriented on the approach presentedby Andriesse et al. [14]. Using a slightly more ag-gressive decision process for function identification, itachieves better coverage than comparable tools suchas IDA Pro or radare2, at the cost of a slightly higherfalse positive rate.Because of the complexity and wealth of informa-tion inferable from code, we limit ourselves to only afew aspects covered with cursory analysis in this pa-per. Instead, we will follow up with an in-depth eval-uation of our method and an analysis of the malwarecode base in a consecutive publication.
5.2.1 Cursory Control Flow Graph Analysis

Using SMDA, we have disassembled all samples andextracted key indicators with regard to their ControlFlow Graphs (CFG). The results are shown in Table 2a.Note that .NET families have been excluded and thevalues have been previously aggregated on family-level to only show representative values for x86/x64machine code.

With regard to the number of functions, the small-est type of malware found are typically downloaderswithout any other functionality. In our corpus, exam-ples for these minimalistic families are TinyLoader (3functions), Dorshel (3 functions), Cabart (9 functions),StegoLoader (13 functions), Hamweq (14 functions),and Harnig (15 functions). Generally, the families be-low the first quartile (181 functions) are reigned bydownloaders, modularized RAT servers, and purifiedransomware. They also include somemalware relatedto spam (e.g. Asprox, Matsnu, Pushdo).The families between the first and third quartile(181 to 1107 functions) often include several of thewell-known behavioral aspects tied to malware, suchas information stealing, enabling financial theft, spam,DDoS, downloading and ransomware.The families beyond the third quartile typically fallin either of two categories. First, some of them simplybring a vast range of functionality to the table. Sec-ond, the others are massively inflated through the ex-tensive use of statically linked third-party libraries, in-cluding OpenSSL, Boost C++, or various Delphi mod-ules. In fact, out of the 26 families identified as beingwritten in Delphi, 21 fall above the third quartile.Looking at the other values shown in Table 2a, itstands out that they very strongly correlate with eachother across all quartiles, further underlined by thePearson Correlation Coefficients shown in Table 2b.Overall, the ratio of basic blocks to functions is situ-ated between 8 and 10, the ratio of instructions to func-tions is at around 49 and 54, and the ratio of functioncalls to functions between 2.4 and 3.2. Similarly, basicblocks consist on average of 5.5 to 6.2 instructions.
5.2.2 Program Database Information (PDB)

Microsoft [15] has defined a proprietary standard forcreatingmeta information during compilation that canbe used to enrich debugging sessions. A fragment oc-casionally found in malware are path specifications tothe corresponding program database (PDB) files.As already mentioned in Section 5.1.5, 163 sam-ples belonging to 111 families (24.98%) in our data setcontain references to PDB files. Looking closer at thepaths of these PDB files, we can identify 32 some-what expressive user names that are not as genericas "User", "Administrator", or the like. Furthermore, wefind 49 references that can be interpreted as projectnames as chosen by the authors and 40 of them di-rectly correspond to a name or alias that this family is
12 Daniel Plohmann, Martin Clauß, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape
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referred to. This shows that in case where informationof the author’s own naming is available, that this is of-ten adopted as a reference by malware researchers.

5.3 Windows API Usage Analysis
In this section, we study how malware families makeuse of the Windows API. Generally, from a softwareanalysis point of view, a program’s interaction with anAPI can reveal a lot of insight into the behaviour ofcode. For this very reason, the inspection of API in-teractions is often an essential cornerstone when con-ducting detailed malware analysis, as it may be usedas a pointer to the code regions responsible for e.g.persistence, networking, or other functional aspectsof interest. We first lay out our methodology for theanalysis and give a short introduction to ApiScout [8]including a showcase of its accuracy on a small selec-tion of benign Microsoft binaries. Next, we apply ApiS-cout to the current data set and evaluate aspects suchas the availability of Windows API import informationin malware memory dumps as well as frequencies ofoccurrence for DLLs and APIs across malware fami-lies.
5.3.1 ApiScout: API Information Recovery from

Memory Dumps

As explained in Section 3.3, we create memory dumpsfor all malware samples contained in Malpedia usinga small set of reference VMs. Since we control the en-vironment dumps are taken from, we can exploit theassociated knowledge in our favour, e.g. by inventoriz-ing all DLLs present on the system. Using this data, wecan infer a complete view of the structure of the Win-dows API on a process-level perspective. It is also ofimportance that DLLs are usually loaded at the samebase address across all processes [16] and this inven-torization procedure results in a listing of all offsets ofexports they provide.In consequence, we can derive the actual ad-dresses at which API functions will be available andthrough which they will be referenced in the loadedprocesses of programs, including malware. Dumpingof malware has another benefit: It yields us a snap-shot of the (unpacked) malware in memory during itsexecution. This means we may be able to observeAPI entry points dynamically loaded [17] and not justthose referenced through the regular method of us-ing the PE header’s import tables. Using runtime VMsnapshots also solves any issues potentially arisingfrom dynamic rebasing through ASLR [16] since weonly need to ensure that every DLL has been loadedonce in order to have it assigned its randomized off-set. We can then index these offsets along the baseaddresses during the inventorization process. The in-ventorization of our reference VMs results in 57,315 ex-ports from 134 DLLs for Windows XP SP3 and 105,765exports from 382 DLLs for Windows 7 SP1 64bit. Re-moving redundancies, we end up with 59,366 unique

API functions in both systems combined. This lowernumber is explained by Windows 7 64bit containingvariants of both 32bit and 64bit DLLs, needed for com-patibility reasons.Given a database of all exports of DLLs present inthe system, we can now perform a lookup for arbitraryDWORDs/QWORDs and check if they potentiallymatchan inventorized API address. This is the core idea ofApiScout and has been implemented in a library pro-vided on GitHub [8]. For ApiScout, we avoid makingstructural assumptions about input buffers presentedand simply scan every DWORD/QWORD linearly for po-tential API address identity. This way, we can handleshellcode and mapped PE files the same way.To remove potential false positives (FPs), we in-clude a parameter to optionally filter to import refer-ences that appear in groups (as is usually the case forregular structures, such as an IAT). If set, the filter willremove all import references that do not have a neigh-bour within a certain range. In the following, we use 32bytes as filter width.We performed a small test evaluation to measurethe accuracy of ApiScout. We took 15 benign systembinaries as found in Windows and dumped their mem-ory during execution. Next, we parsed their importand delay import tables to be used as ground truth.In this scenario, ApiScout already achieved an F-Scoreof 0.991 and 0.995 with the neighbour filter activated.Manual inspection of the deviations reveals that ApiS-cout finds all entries in the respective import addresstables (IATs) resulting in no recorded false negatives.False Positives are found for only three dumps:
explorer.exe, mmc.exe, and cmd.exe. To oursurprise, all three of these programs make useof dynamic API loading during their runtime via
kernel32!GetProcAddress. As this mechanismworks around the Import Table, it explains why theseimported API functions are not covered by the groundtruth, which is based on import tables exclusively. Thisleads to a total of 5,367 correctly identified API func-tions and technically 51 FPs, which however are alsoentirely dynamic imports used by the respective pro-grams and identified by ApiScout. This shows thatApiScout can be used to identify imports of WindowsAPI functions as found in dumps of programs withhigh precision. However, note that ApiScout does notcheck if the offsets discovered are referenced by anycode and therefore still should be taken as an approx-imation of the actual API interactions.
5.3.2 API Information Availability

When analyzing malicious software, the interaction ofcode with the Windows API often serves as an impor-tant cornerstone. Looking at howmanymalware fami-liesmay have information on their Windows API usageavailable, we can quickly exclude 64 out of 446 fami-lies (14.35%)which have been previously identified (cp.Section 5.2) being written using the .NET framework,because in this case the import model can not be eas-ily correlated with traditional Windows API usage.
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Figure 4: Distribution of Import Style for Windows APIsacross 382 families (64 .NET families excluded).
However, we can investigate the remaining 382families and check if they have API information avail-able for analysis identifiable with ApiScout. Addition-ally, we can check for the regularity of references to theWindows API or if interactions happen in a concealedway, i.e. using obfuscation [18]. In order to distinguish,we have defined three classes of Import Styles:• Static (i.e. regular) imports using the PE header’simport table.• Dynamic imports of exact WinAPI function ad-dresses that are cached within the memory oc-cupied by the malware and hence are still de-tectable by ApiScout.• Custom import schemes that we label as "obfus-cation" and explain in the following.The results of this analysis are shown in Figure 4.Please note that we did not investigate every API ob-fuscation scheme in full detail and therefore did not ex-tract the actual collection of APIs used by these fam-ilies. It is also likely that we missed API obfuscationschemes due to not employing in-depth code analy-sismethods in this evaluation, meaning that the actualfraction may be higher than displayed.First, we observe that almost half (46.2%) of thefamilies collected use static imports exclusively. Webelieve that this import style similar to most regularprogramsworks sufficiently well formanymalware au-thors as it allows them to get along without adding po-tentially sophisticated methods that carry the risk offailure. It may also reduce the detection surface astheir malware will not have a suspiciously low num-ber of imports and will show fewer dynamic loading(e.g. LoadLibrary/GetProcAddress), which is usuallyrecorded during the execution in dynamic analysis sys-tems such as sandboxes.Second, almost another half (49.0%) of familiesuses dynamically loaded imports, optionally combined

with static imports or obfuscation schemes. In thecaseswhere the dynamic loading is combinedwith an-other method, it is interesting to dissect the parts ofthe Windows API that malware authors deem worthyto treat in a specific way. Looking at the overlap be-tween families using static and dynamic imports, weidentify 108 families using both methods. For these,we have found between 1 and 263 dynamically im-ported API functions with a median of 21 and an aver-age of 42.81 (or 24.26%of API functions these familiesimport overall). Here, it seems that malware authorsindeed try to hide suspicious activity, as about 40% ofthe exclusively dynamically loaded API functions cor-respond typically to behaviors such as process control,process injection, and network communication. As aside note, about 3.45% of these API functions havebeen redundantly imported by both the static and dy-namic method.Finally, we found at least 5.5% of the families usingobfuscation schemes for which API function informa-tion is not recoverable with ApiScout. Exemplary, wehave identified the following obfuscation methods be-ing used. 8 families are resolving APIs every time theyintend to use them (Shifu, StegoLoader, ...). Another7 families store their imports in a separate, dedicatedmemory segment on the heap (Cryptowall, SolarBot,...), while 2 families manage their imports on the stack(PoisonIvy and Dorshel). One family each build theirown jump-table instead of using an API function offsettable (Andromeda), add 5 bytes upon the API addresslikely to avoid hooks (Chthonic), build an on-demandoffset table (Dridex), or store imports XORed with astatic key (Qadars).In conclusion, we note that for a majority offamilies information about interactions with the Win-dows API are easily recoverable and happen naturallythrough direct references to the function offsetswithinthe respective DLLs.
5.3.3 DLL and API Usage Frequencies

Another interesting viewpoint onWindows API interac-tion are the frequencies with which different DLLs andAPIs are used across all families.Table 4 lists the general characteristics of Win-dows API usage. Zero API and DLL imports correlatewith families using pure obfuscation schemes.
API Functions DLLs

min 0.00 0.0025% 84.08 5.6950% 122.25 8.0075% 191.71 10.74max 592.00 24.00mean 150.26 8.32Total Observed 3693.00 59.00
Table 4: Occurrence frequencies per family (64 .NET familiesexcluded).

With 592, The most APIs are used by Dark-Comet [19], a fully fledged RAT written in Delphi. With24, themost DLLs are used by ThumbThief [20], whose
14 Daniel Plohmann, Martin Clauß, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape



THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, NO. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

API Occurrences DLL Occurrences
1 kernel32.dll!Sleep 330 (86.39%) kernel32.dll 363 (95.03%)2 kernel32.dll!CloseHandle 326 (85.34%) ntdll.dll 352 (92.15%)3 kernel32.dll!GetModuleHandle 323 (84.55%) advapi32.dll 302 (79.06%)4 kernel32.dll!CreateFile 314 (82.20%) user32.dll 293 (76.70%)5 kernel32.dll!WriteFile 312 (81.68%) shell32.dll 220 (57.59%)6 kernel32.dll!GetProcAddress 312 (81.68%) ws2_32.dll 206 (53.93%)7 kernel32.dll!GetModuleFileName 307 (80.37%) wininet.dll 161 (42.15%)8 kernel32.dll!LoadLibrary 303 (79.32%) ole32.dll 151 (39.53%)9 kernel32.dll!ExitProcess 293 (76.70%) shlwapi.dll 140 (36.65%)10 kernel32.dll!ReadFile 285 (74.61%) oleaut32.dll 110 (28.80%)11 kernel32.dll!GetCurrentProcess 280 (73.30%) gdi32.dll 98 (25.65%)12 kernel32.dll!GetTickCount 279 (73.04%) msvcrt.dll 84 (21.99%)13 ntdll.dll!RtlGetLastWin32Error 274 (71.73%) crypt32.dll 68 (17.80%)14 ntdll.dll!RtlAllocateHeap 261 (68.32%) iphlpapi.dll 50 (13.09%)15 kernel32.dll!WideCharToMultiByte 261 (68.32%) psapi.dll 48 (12.57%)16 kernel32.dll!CreateThread 257 (67.28%) netapi32.dll 43 (11.26%)17 kernel32.dll!MultiByteToWideChar 252 (65.97%) urlmon.dll 40 (10.47%)18 kernel32.dll!TerminateProcess 246 (64.40%) version.dll 38 ( 9.95%)19 kernel32.dll!GetCurrentProcessId 244 (63.87%) mpr.dll 33 ( 8.64%)20 ntdll.dll!RtlEnterCriticalSection 241 (63.09%) winhttp.dll 28 ( 7.33%)

Table 3: Most common APIs and DLLs across all families (excluding .NET)

loader includes a variety of functionality for fingerprint-ing the system it is attacking. On average we observed8 DLLs providing access to around 150 API functionsper malware family. It is also notable that we found atotal of 3,693 Windows API functions being used, outof 59,366 unique API functions tracked in the ApiScoutdatabases (WinXP and Win7 combined).
The most common APIs and DLLs are listed in Ta-ble 3. Please note that we have grouped the respec-tive ANSI and Unicode variants of API functions (suchas LoadLibraryA and LoadLibraryW) for this table intosingle representatives, reducing the number of uniqueAPI functions from 3,693 to 3,316.
To our surprise, kernel32.dll!Sleep turned outto be the most common API function used across allfamilies. Our interpretation for this is that malware,considered as a form of a somewhat autonomouslyacting program, needs to temporally organize its be-haviour. In that sense, Sleep offers applicability in amultitude of cases, such as controlling communica-tion frequencies (C&C), ensuring persistence (e.g. reg-istry and file-system lookups), or delaying execution(e.g. as an anti-analysis method).
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Figure 5: Occurrence frequency of WinAPI functions with re-gard to number of families they appear in.

Many other API functions are centeredaround the topic of execution control. Thisincludes aspects such as dynamic imports(GetModuleHandle, GetProcAddress, LoadLibrary),handles (CloseHandle, GetCurrentProcess), errorhandling (GetLastWin32Error), or self-termination(ExitProcess, TerminateProcess). As expected,file-system interaction (CreateFile, WriteFile,
ReadFile) is also very commonly found. It is notablethat not a single network-related API function is withinthe top 20 list. We believe that this is explained bythe freedom of implementation offered by the Win-dows API and also reflected by the most commonlyused DLLs. Assuming a malware author wants hismalware to communicate with a C&C server using theHTTP protocol. They now can choose between us-ing wininet.dll for access to high-level functions,use the more service-oriented winhttp.dll, or opt for
ws2_32.dll and re-implement simplified HTTP han-dling themselves.

This observation carries on into the fact that theconcrete composition of API functions used by a mal-ware family seems to be heavily characteristic for thatfamily. Figure 5 shows for every of the 3,693 WindowsAPI functions in how many malware families they ap-pear.
Discounting families using obfuscation and.NET (360 remain), only kernel32.dll!Sleep and

kernel32.dll!CloseHandle appear in more than 90%of families. Furthermore, only 44 API functions ap-pear in more than 50% of the families. Taking theaverage number of API functions per family from Ta-ble 4, the API function residing in position 150 wouldbe kernel32.dll!WaitForMultipleObjects, which ispresent in only 23.89% of the families. Looking theother way around, a massive 3,320 (89.90%) of allobserved API calls appear in less than 10% of the fam-ilies. We believe that this observation on the disparityof API compositions per family supports the effec-tiveness of the general idea behind approaches likeImpHash [21] and ImpFuzzy [22].
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Because looking at individual API functions haslimited expressiveness, we have decided to define 12context groups with 93 sub-contexts that can be usedto group API functions by their potential field of use.We have categorized 3817 of the 4239 (90.04%) APIfunctions found in all samples, which cover 99.41% ofindividual API function appearances of our test dataset. This functionality has also been integrated intoApiScout and will be updated as needed.Our results for evaluating API function frequenciesusing context groups are listed in Table 5.
Context Occurrences

1 Execution Control 367 (96.07%)2 Memory 361 (94.50%)3 File System 353 (92.41%)4 System 353 (92.41%)5 String 352 (92.15%)6 Network 312 (81.68%)7 Time 304 (79.58%)8 Registry 264 (69.11%)9 GUI 248 (64.92%)10 Other 210 (54.97%)11 Device 193 (50.52%)12 Crypto 175 (45.81%)
Table 5: Occurence frequencies of API context groups byfamily (excluding .NET).

As can be seen, only about four in five familiesexert network functionality. This is easily explainedwith families that require no immediate control toexecute their intentional behaviour, or that are in-strumented by other families. Examples for this arepurely destructive wipers or information collectorsthat are dropped by other malware. Another exam-ple is ransomware in which the criminals require theirvictims to contact them actively via email instead ofestablishing a communication channel themselves(e.g. for sending back encryption keys). A bit sur-prisingly, almost equally as many families interactwith API functions providing time information, wherethe concrete functions used to query are partitionedinto kernel32.dll!GetSystemTimeAsFileTime(179), kernel32.dll!GetLocalTime (114), and
kernel32.dll!GetSystemTime (86). The seeminglylow number of families using Windows API functionsrelated to Cryptography is explained with a likely highdark figure of authors using external code for popularalgorithms such as CRC32, RC4, and AES instead ofrelying on the Windows API.

6 Related Work
There have been some efforts to collect and organizemalware in the past. Nativ et al. [23] have been col-lecting and providing malware samples organized byfamilies in their project "theZoo". Freyssinet [24] stud-ied the malware ecosystem in detail, primarily focus-ing on botnets and collectedmeta data information on412 malware families, organized and published in [25].The Malware Wiki [26] is another extensive resourcecollecting meta data and high level descriptions for

various malware families. MITRE organizes the Ad-versarial Tactics, Techniques, and Common Knowl-edge (ATT&CK) [27] knowledge base, focusing primar-ily on APT activity and tying behaviours to actor groupsand malware families. The collective of Malware-HunterTeam run the web service ID Ransomware [28],focusing on the identification of ransomware based onencrypted files and ransom notes. They track 497 dis-tinct variants. Malpedia already has significant overlapwith all of the above collections and we plan to coveras many as possible of the families contained in themwith samples in the future. In a preservatory fashion,Hypponen provides a collection of 86 families of 1980sand 1990s malware in the Malware Museum [29].Guidelines for malware naming schemes havebeen proposed by e.g. CARO [30] in 1991 andMITRE [31] in 2006. Even these early works alreadypoint out the tendency of introducing synonyms formalware family names instead of agreeing on unam-biguous identifiers.Sebastián et al. [32] experimented with the consis-tency of AV detection labels, noting significant noisethat they addressed with their tool AVClass. They alsoemphasize that analysts have a need for accuratemal-ware identification. Lever et al. [33] recently conducteda large scale analysis involving 26.8 million malwaresamples, primarily focusing on malware traffic. UsingAVClass, they identified 3,834 clusters of families withmore than 10 samples within their data set. This fur-ther supports our claim that the space of families andversions is way smaller than the number of packedsamples. Ye et al. [34] recently provided a compre-hensive overview of works that propose malware de-tection techniques using data mining. The collectionof features extracted from the surveyed works is alsohighly compatible with Malpedia.Belaoued et al. [35] extracted Windows API func-tion frequencies from a selection of 50 malwaresamples for malware detection. Their API functionfrequency table overlaps in 50% with our results.Zwanger et al. [9] conducted an analysis of WindowsAPI function call distribution from a kernel-mode per-spective. They showed that malware and benigndrivers expose discriminable characteristics in theirAPI usage.Rossow et al. [1] described best practices for de-signing malware experiments, surveying related workfor their conformance with these requirements. Theirwork has also heavily inspired decisions taken in thiswork.

7 Conclusion
In this paper, we addressed the continuous lack ofquality data suitable for static malware analysis. First,we defined requirements for a such a malware corpustailored for static analysis. We next presented our ef-forts for a vetted curation and inventorization platformcalled Malpedia, including a baseline data set of morethan 600 malware families.
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To show the usefulness of the data set, we per-formed a comprehensive comparative analysis ofstructural features extracted from 446 families ofcleanly labeled Windows malware, primarily focusingon PE header characteristics andWindows API usage.Our key findings are the following. Packers mostlyserve just as an initial barrier against detection and themajority of unpacked samples are quite well-formedand can be conveniently treatedwithmethods of staticanalysis. The information extracted even with just cur-sory methods draws a consistent picture and gives aninteresting insight in preferences and choices of mal-ware authors. We firmly believe that the number ofunpacked samples required to expressively representthemalware landscape interpreted as families and ver-sions is many orders of magnitude smaller than thenumber of packed samples found in the wild. We thinkthat the experiments conducted in this work demon-strate thatMalpedia can serve as a solid foundation forvarious future research activities. By responsively pub-lishing this data set through our platform for free, wehope it will contribute as a reference for identificationand labeling in analysis processing chains or serve asa starting point for more in-depth studies requiring asignificant number of malware families.
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Appendix
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Table 6: Windows malware families (446) covered in the evaluation presented in Section 5.
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