CECyF

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

Daniel Plohmann’, Martin ClauB’, Steffen Enders?, EImar Padilla’
! Fraunhofer FKIE, 2TU Dortmund

It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
@@® ltis shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract

For more than a decade now, a perpetual in-
flux of new malware samples can be observed.
To analyze this flood effectively, static analy-
sis is still one of the most important methods.
Thus, it would be highly desirable to have an
open, freely accessible, curated, and cleanly la-
beled corpus of unpacked malware samples for
research on static analysis methods. In this pa-
per, we introduce Malpedia, a collaboration plat-
form for curating a malware corpus. Addition-
ally, we provide a baseline for a cleanly labeled
malware corpus consisting of 607 families di-
vided into 1792 samples. This corpus offers
a plethora of possibilities for researchers, in-
cluding using it as a testbed for evaluations on
detection and analysis methods, quality assur-
ance for classification, and contextualization of
new malware.

To ensure the quality of our corpus, we
adapted the requirements by Rossow et al. [1],
derive specific requirements for the context of
static malware analysis, and evaluate our cor-
pus against them.

Based on our corpus, we show that looking
beyond packers dramatically reduces the size
needed for a corpus to be representative, as the
number of distinct malware families and ver-
sions after unpacking is orders of magnitude
smaller than the number of unique packed sam-
ples. Additionally, we perform a comprehen-
sive study of the Windows malware in the cor-
pus, scrutinizing its structural features. This
analysis clearly illustrates that Malpedia offers
a wealth of information, readily available for in-
depth investigations.

Keywords: malware corpus, malware analysis

1 Introduction

It is a well-known fact that the number of registered
unique malware samples observed since 2005/2006
has drastically increased, and currently sits at almost
700 million samples as e.g. tracked by AV Test [2].
This is a direct consequence of the common use of
so called packers, auxiliary programs that contain rou-
tines such as compression or encryption algorithms
used to alter the appearance of the respective payload
code in order to protect it against detection or analy-
sis. In fact, it can be assumed that the actual number
of malware families or versions is significantly below
these figures. Nevertheless, these observations can
be taken as a symbol for the massive gain in impor-
tance of malware over the last decade, be it as a tool
for digital crime or in the context of state-sponsored
activities.

The overwhelming number of samples and its fast-
paced growth has strong implications on malware re-
search. They lead to a high demand for advanced
methods to detect, analyze, and contextualize mal-
ware. While researching such methods, it is of ut-
termost importance to have representative data for
evaluation available. Rossow et al. [1] have shown
that in past academic studies there has been a lack
of comprehensiveness and representativeness in the
data used. This renders academic research less ef-
fective.

Ideally, researchers would have access to an inde-
pendent, pooled resource that provides them with con-
fidently labeled, unpacked reference samples for mal-
ware families and versions, alongside available meta
information such as pointers to analysis reports or de-
tection capabilities such as accurate YARA rules. Our

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 1

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

evaluation shows that there is in fact huge redundancy
in packed samples versus unpacked reference sam-
ples for families and versions. Thus, such a corpus
could likely be distilled down to a couple thousand in-
stead of many hundred million files.

To address the above-mentioned situation, in this
paper we introduce an independent platform called
Malpedia. It allows malware researchers to contribute
to a centrally curated, free corpus. Initially, it of-
fers access to a corpus we created since 2015, span-
ning around 1800 cleanly labeled samples represent-
ing more than 600 families for several platforms, in-
cluding Android, mac0S/iOS, Linux/ELF and Microsoft
Windows.

To show the usefulness of Malpedia and the corpus
in its current stage, we conduct a comparative study
on several characteristics across the families of Win-
dows malware archived at the time of writing. This
study leads to the following core results:

+ Packers mostly serve as an initial barrier against

detection.

« The number of unique unpacked samples is
orders of magnitude smaller than the one of
packed samples.

+ Unpacked samples can be conveniently treated
with methods of static analysis.

+ The information extracted even with just cursory
methods already gives an interesting insight in
preferences and choices of malware authors.

We implement our comparative analysis in such a
way, that it can be continually executed over the grow-
ing data set in the future and provide updated results
via the web portal found at https://malpedia.caad.
fkie.fraunhofer.de.

In summary, we make the following contributions
with our paper:

+ We define a set of requirements that malware
corpora intended for static analysis should fol-
low.

« We introduce a vetted collaboration platform
with the mission to curate a reference mal-
ware corpus, providing unpacked and dumped
samples to specifically address static analysis
needs.

« We provide a malware corpus for free to the re-
search community.

+ We perform a comprehensive, quantitative static
analysis of structural features across 446 fami-
lies of Windows malware.

+ We show that it is viable to assume that pack-
ers serve mostly as an initial barrier and beyond
this, the number of distinguishable families and
versions is magnitudes smaller than the number
of unique samples encountered in the wild.

The remainder of this document is structured as
follows. Section 2 specifies requirements which a mal-
ware corpus optimized for static analysis should fol-
low. Section 3 presents the way in which we have
implemented these requirements to build our corpus,
Malpedia, and provides an outline of its current sta-
tus. We use Section 4 to give insight into the design

of the platform that we have created to share the cor-
pus with the community and with which we want to
curate it in the future. In Section 5, we use the cur-
rent status of the data set to conduct a comparative
study across various structural features, showcasing
the usefulness of the Malpedia corpus for static anal-
ysis. Section 6 summarizes related work while Sec-
tion 7 concludes the paper.

2 Goals and Requirements for a
Malware Corpus focusing on
Static Analysis

In this section, we first define general goals that a mal-
ware corpus focusing on static analysis should fulfil.

We then focus on requirements to ensure that a
corpus is created towards these goals. For this rea-
son, we recapitulate the guidelines to consider when
planning and executing malware experiments, as de-
fined by Rossow et al. [1] in 2012. After checking their
applicability for this special case, we rephrase and ex-
tend these aspects and combine them into our own set
of requirements.

2.1 Goals

The primary goal of any malware corpus should be to
contain representative data. Ideally, it should cover
longer periods of time within the malware landscape,
in order to allow comprehensive measurements, re-
flecting changes over time. In that sense, it should also
naturally be updated as necessary to keep up with the
frequent developments as encountered when dealing
with malware.

Furthermore, the corpus should provide the data in
an easily accessible format. We believe that providing
some verified unpacked format of the samples adds a
huge benefit over just providing their original state (be
it packed or not). As the corpus described here is in-
tended to be specifically suited for static analysis, this
allows to directly orientate analyses from a viewpoint
behind the classical packer-barrier. Just as important,
a malware corpus should provide rich meta informa-
tion, at the very least accurate labels, in order to better
judge and classify findings derived from it. Note that
the packer-barrier has a strong presence in essentially
every malware feed or data set currently available, and
meta information is usually limited to detection labels
as provided by anti-virus software.

Another goal should be that such a malware corpus
is a resource equally useful for practitioners to ensure
it is being reviewed for relevance from different per-
spectives. By providing vendor-neutrality in its cover-
age, it could also serve as a consensual ground-truth
among malware researchers, both for naming in the
concrete case and as a source for the verification of
identification measures in general.

2 Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

https://malpedia.caad.fkie.fraunhofer.de
https://malpedia.caad.fkie.fraunhofer.de

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

2.2 Adoption of Prudent Practices

Rossow et al. [1] defined their set of guidelines in a way
that they would be applicable for a wide range of ex-
periments involving malware. The guidelines address
evaluations of techniques for detection, classification,
and behavioral analysis, based on dynamic, static, or
combined analysis methods.

This paper focuses specifically on the creation
of a malware corpus optimized for static analysis.
We therefore review the applicability of these guide-
lines, selecting the relevant subset that we consecu-
tively include into our requirements for such a corpus.
Rossow’s guidelines are grouped into 4 categories:
correctness of the data set, transparency, realism, and
safety.

First, with regard to the correctness of data sets, it
is highly relevant to balance over malware families and
even platforms as malware has drastically diversified
over the last years (cp. 2.3.2). Environment artifacts
have only minor impact in the context of static analy-
sis and they do not have to be addressed beyond doc-
umentation (cp. 2.3.5). Generally, goodware can be ig-
nored since the goal is to compile a malware corpus.
In the same way, there should be no side effects oc-
curring related to blending with benign data. Since no
detection or classification methods are proposed or
benchmarked, splitting of training and evaluation data
setsis not applicable, similar to monitoring of malware
and the system privileges that would be used for this.

Second, with regard to transparency, we consider
annotations with family names and further meta data
as a core requirement for such a corpus tailored for
static analysis (cp. 2.3.4). This requires that samples
as clean as possible, i.e. they are unpacked and iso-
lated from potential packer fragments in order to allow
for their accurate identification (cp. 2.3.3). With regard
to the sample selection policy, such a corpus should
aim at both coverage in number of discernable fami-
lies and versions to enable a comprehensive analysis
of code evolution (cp. 2.3.1). The method and envi-
ronment (including network connectivity) used to cre-
ate the data for the corpus should be carefully docu-
mented (cp. 2.3.5). Not relevant is the review of true
and false positives and negatives, since the require-
ments address a pure data collection project.

Third, with regard to realism, a corpus should aim
at providing a collection of prevalent and timely mal-
ware families (cp. 2.3.1), including being kept up to
date (cp. 2.3.6). This also ensures relevance for real-
world applications in which the corpus may be used
later on (cp. 2.3.1). The provision of appropriate mal-
ware stimuli in the sense of the corpus can be trans-
lated into ensuring that all modules, e.g. for differ-
ent platforms or bitness, or providing additional func-
tionality are extracted alongside in the unpacking pro-
cess (cp. 2.3.3). Generalization of results from an 0S
version or providing Internet access is again not appli-
cable as these requirements do not address an exper-
iment in itself.

Fourth and finally, safety and with that the contain-
ment policy is mostly of importance for the further dis-
semination of the resulting corpus (cp. 2.3.6).

2.3 Definition of Requirements

Having reviewed the prudent practices for reasonably
applicable components, we now formulate a set of re-
quirements specifically tailored for a malware corpus
focused on static analysis.

2.3.1 Representative Content

The most important requirement for a corpus is to be
representative. This means that the selection of sam-
ples contained in the data set should be prevalent and
suitable for the deduction of results that are of real-
world relevance.

Another requirement in this context is to favor qual-
ity over quantity. In this regard, the intention is to
strictly avoid redundancy in the samples contained,
from the perspective of discernable malware families
and versions beyond the packer-barrier. This is a vi-
able requirement since the focus is on static analy-
sis, and since unpacked versions of the samples are
provided, de-duplication can be applied. Barabosch et
al. [3, 4] showed that under given circumstances even
small data sets of carefully selected samples can yield
representative results.

This matches our own experiences, motivated by
the following example: In cooperation with Shad-
owserver, we identified more than 80.000 samples
of Citadel since 2013 and performed datamining on
their botnet configurations. Over this time, we have
observed more than 140 different unique identifiers
correlating to builder kits, underlining its prominence
among criminal actors at that time. However, all of the
samples we observed can be represented by a mere
21 distinct versions, achieving a data reduction fac-
tor of 3,800x for this family with respect to this view-
point. We observed similar factors for other families
analyzed in a similar way, for example: TinyBanker
(5,700x), Asprox (5,500x), VMzeus (471x), and KINS
(105x).

2.3.2 Cross-Platform Orientation

Nowadays, the existence of malware for many differ-
ent hardware platforms has been proven. With the
trend of embedding technology into various objects of
everyday live, it is more than likely that multi-platform
orientation will become more and more important.
Therefore, a malware corpus should not limit itself to
a single platform. If desired, this reduction can be
achieved artificially later on by selecting only parts of
the corpus.

Daniel Plohmann, Martin Claul}, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 3

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

2.3.3 Unpacked Samples

To adhere to the goal of easily accessible contents
in the context of static analysis, it is required to pro-
vide unpacked counterparts of the samples if needed
and where applicable. This is essential to enable
static analysis on the actual malware families’ code in
the first place. Additionally, these unpacked versions
should be kept as free as possible from any packer
fragments to not interfere with analysis.

However, we want to adjust this requirement of un-
packing for two reasons to focus on memory dumps
instead.

First, we think it is actually more beneficial to cap-
ture malware in the way closest to how it is typically
naturally encountered. Clean unpacked samples are
rarely found in the wild and often a result of either an
actor’s mistake or an analyst’s efforts. This leads us
to instead consider an in-memory view of an unpacked
malware as a preferable option, which can be usually
obtained by performing a memory dump.

Second, this in-memory view is actually more
generic and can even serve as a form of normaliza-
tion across families. Especially, as not every malware
specimen can be transformed into an unpacked sam-
ple in the traditional sense of a runnable on-disk ver-
sion of itself. Some specimen exist only in a shellcode
representation that may be entirely dynamically loaded
by other components.

We believe that dumps are a favorable approxima-
tion to unpacking for multiple reasons:

« Dumping is drastically easier to automate, as
we do not aim for full reconstruction but rather
something suitable for static analysis.

+ Since the corpus aims for packed and un-
packed counterparts, omitting intermediate
packer/loader stages that could be addressed
with granular unpacking is an acceptable com-
promise for higher automation success.

+ Dumps may contain additional runtime-only in-
formation such as decrypted strings or APl im-
ports that ease analysis and provide additional
insights. The imported libraries are also already
mapped into memory.

Itis important to note that basic information about
the origin of the dump should be recorded as well, at
least the base address of the memory segment it was
taken from.

2.3.4 Accurate Labels and Meta Data

Another requirement is that samples should have an-
notations, at least an accurate label regarding their
family membership. Where applicable, additional
meta data should be recorded, such as version num-
bers within the family. In cases where the unpack-
ing/dumping yields multiple results of interest, these
have to be annotated accordingly. Typical cases where
this can occur are families that consists of multiple
modules or come with plugins, deployed from a single
dropper file.

2.3.5 Documentation of Data Generation

It is important for a malware corpus to document how
it was created, in order to enable accountability and
reproducibility. In the first place, it should be tracked
where the malware samples originate from. Further-
more, if the corpus contains derived data (such as
dumps), it is also necessary to document the applied
methods and their configurations (e.g. environment
specification, parameters).

2.3.6 Curation and Dissemination

Should the corpus be updated over time, then it is im-
portant to ensure consistency in its structure and con-
tent. For this reason, the content should be curated in
the same way it was originally created.

Additionally, the data contained in such a corpus
is potentially harmful for many computer systems. It
should be only made accessible to parties that are
trusted and believed to be able to handle such a data
set with the required carefulness.

3 The Malpedia Corpus

In this section, we introduce the Malpedia corpus,
which has been developed in line with the require-
ments specified in Section 2. We first define our in-
terpretation of the terms Malware Family, Unpacked
Sample, and Dumped Sample. Next, we explain our ap-
proach for sample selection and our method to cre-
ate clean memory dumps of malware. We continue
by documenting our data storage format and give an
overview over the current contents at the time of writ-

ing.

3.1 Terminology

Before explaining our methodology, we define some
reoccurring terms as used in the context of Malpedia.

Malware family: We use the term malware family to
group all malware samples that from a developer’s
point of view belong to the same project, i.e. code
base. This also incorporates potentially existing ad-
ditional components as used by the malware such as
tailored loaders or plugins. We are aware that this def-
inition is not fully sound and carries fuzziness with
regard to the origin and similarity of code as well as
its potential authorship. But from our impression, this
ultimately allows us to reflect the current consensus
among many practitioners. Furthermore, this defini-
tion gives us some freedom to make a distinction be-
tween the outcome of leaked source code (e.g. the off-
springs of Zeus, Carberp, or Gozi) but also consolidate
rewrites of the same project (e.g. GPCode).

Unpacked sample: An unpacked sample is a direct
representative of the malware family itself, without
presence of any third-party code not related to its

4 Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

own code base that may have been applied post-
compilation to conceal its identity. This does not ad-
dress the removal of any staging or obfuscation as
employed by the family itself. Ideally, an unpacked
sample is also in a state where it can be natively
started within its compatible operating systems, e.g.
unmapped and with a correct entry point.

Dumped sample: We consider a runtime memory cap-
ture of the malware during execution as a dumped
sample. In the majority of cases, this will originate
from a memory-mapped process image with arbitrary
initialized dynamic data, e.g. Windows API function
imports or global variables.

3.2 Collection Approach

In Malpedia we want to prefer quality over quan-
tity. This means that increasing the coverage of un-
packed/dumped samples for a new family is more im-
portant than adding further samples for a known fam-
ily. Instead of collecting as many samples as possible,
we put emphasis on the importance of verification for
all samples before adding them to the corpus to main-
tain a high degree of quality. By this, we hope to pri-
marily increase the longitudinal coverage and achieve
topicality in the data.

Furthermore, we aim to prioritize prevalent mal-
ware families, thus favor malware families that are
very active and affect many users or high-value tar-
gets over others. In the default case, it should be suffi-
cient to choose single representative samples per ver-
sion for basic coverage. This also drastically reduces
the amount of data required to meaningfully represent
even lines of evolution for malware families.

Finally, we want to provide means for quality as-
surance by striving for complete YARA coverage. Pre-
cluding false positives and negatives across the whole
data set on the one hand can serve as a proof of label
accuracy while on the other hand creates a useful tool
for malware identification.

The vast majority of samples included in Malpedia
are also found in other repositories, such as VirusTo-
tal.

Using this orientation, we hope to create a rep-
resentative corpus (2.3.1) without platform limita-
tions (2.3.2), and with accurate labels (2.3.4) for all
samples.

3.3 Dump Creation and Family Identifica-
tion

We decided to centralize and normalize the dump cre-
ation (even for future samples) by using virtualization.
This allows us to always resort to the same VM images
and state to ensure consistency across all dumps. So
far, we only perform dumps for Microsoft Windows
and limit ourselves to two versions: Windows XP SP3
and Windows 7 SP1 64bit, as they cover all our cur-
rent needs. This preference for older OS versions is ex-
plained with the fact that we want to ensure maximum

execution success of samples that may be impaired
by modern security mechanisms embedded into re-
cent versions of Windows. Additionally, all available
Microsoft Visual Studio (MSVC) and .NET runtimes
are installed. To further ensure maximum compati-
bility with packers, we have taken (not publicly docu-
mented) steps to harden the VM against detection.

Sticking to a limited set of VM snapshots yields sta-
ble and known environment parameters, such as user
and computer names, Volume IDs, and Windows DLL
versions. The latter enables the use of ApiScout, a
technique we present in section 5.3.1, on all dumps
contained in Malpedia. This method will be analo-
gously expanded to also cover ELF and potentially ma-
c0S/0SX families, while Android and i0OS malware will
likely be provided as unpacked samples, if applicable
and necessary.

In order to create dumps, we currently stick to the
following procedure. We first attempt to simply start
the sample of interest and wait for a period of time
(by default 60 seconds, prolonged if necessary). After
this time, we perform a full differentiation of allocated
memory versus the clean state and dump all sections
that have changed. We then use a set of heuristics to
aid our following manual inspection in order to select
the reference dumps for the sample. In cases where
this method fails, we use manual in-depth static and
dynamic analysis, to guide the unpacking process in
order to yield an acceptable result.

The actual memory dumping is then performed us-
ing a kernel driver to avoid interference with hooks po-
tentially set by the malware. Regardless of how the
resulting memory dump was produced, we clean the
data (i.e. remove packer fragments) if necessary, ade-
quate, and possible.

Family identification is then performed using the
following steps sorted by priority: applying existing
YARA rules, verifying the classification that may have
been available along the sample (e.g. analysis report
or blog post), and using similarity analyses against the
corpus of existing unpacked files and dumps.

We believe that these measures sufficiently fulfill
the requirements of providing unpacked files (2.3.3),
accurate labels (2.3.4), and documentation of data
generation (2.3.5).

3.4 Storage and Organization

We use a hierarchical folder structure to project the
data into families and versions. On top-level, we gen-
erally use a nomenclature of (platform).(name), where
(platform) may be win, osx or similar and (name) is
typically one of the identifiers as given by third parties
or unidentified_(number) where no such name can
be identified. In cases of multi-platform malware, we
resort to an identifier of the filetype or programming
language such as jar or js.

Samples are stored by their SHA-256 hash, and
associated unpacked or dumped files are stored as
sha256_unpacked and sha256_dump_(addr) respec-

Daniel Plohmann, Martin Claul}, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 5

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS ®

CECyF

tively, where (addr) is the dump’s originating base
address extended to the addressing size, such as
0x00400000. In some cases, multiple dumps will be
taken, to also account for additional modules de-
ployed to memory or anti-analysis tricks. Depending
on the concrete needs, subfolders may be used below
the family identifier to indicate a version (e.g. by in-
ternal scheme, compilation timestamp if it proves to
be reliable, or a first seen date) or component type
(loader, payload, modules, ...). Furthermore, meta data
and YARA rules are stored along the samples.

3.5 Data Set Status

All of the following evaluations refer to the Malpe-
dia repository state as of October 31, 2017 (commit
bf6532c). At this time, the corpus contains a total of
1792 samples inventorized into 607 families.

+ 505 families for Windows

+ 34 families for Android

+ 29 families for macOS/0SX

+ 24 families in ELF format

+ 2 families for iOS

+ 1 family for Symbian

+ 12 families that are scripted or for other reasons

potentially multi-platform
With regard to their state of unpacking and dumping

+ 1149 (64.12%) samples are dumped (and partially

also unpacked)

+ 221 (12.33%) samples are just unpacked

+ 422 (23.55%) samples are neither dumped or un-

packed

So far, only Windows has been addressed with dumps,
where 446 (88.32%) of the families are covered with
at least one dump. Out of these, 98 families have
documented use by one or more Advanced Persis-
tent Threat (APT) actor groups. The total number of
dumps is 1208 as for some samples multiple stages,
e.g. loader and payload have been dumped.

With regard to YARA, 255 rules for 150 families ex-
ist, covering 907 (50.56%) samples. The long term
goal is to achieve perfect coverage across the full cor-
pus.

4 The Malpedia Platform

In this section, we present the platform that we have
created to maintain the corpus in the future. Based
on the feedback on a textual draft that was gathered
from our peers in the CERT and research community,
we explain its primary implementation aspects. This
platform is our way of performing curation and con-
trolling dissemination, as required (2.3.6).

It is important to note that Malpedia is operated
and all data that is collected in it is made available
under Creative Common’s CC BY-NC-SA license, in or-
der to express our vision of creating an independent,
reusable resource.

But before going into details, let us first define the
philosophy behind Malpedia.

Malpedia’s Mission Statement: The primary goal of
Malpedia is to provide a community-driven, indepen-
dent resource for rapid identification and actionable
context when investigating malware. Openness to cu-
rated contributions shall ensure topicality and an ac-
countable level of quality in order to foster meaningful
and reproducible research.

4.1

The data of which Malpedia constitutes contains po-
tentially sensitive and dangerous contents. It is there-
fore warranted to ensure a limitation of access to an
audience aware of the risks and experienced in han-
dling such data. We have decided to introduce a vet-
ting process as access control measure and adopt the
Traffic Light Protocol (TLP) [5].

We consider the majority of meta data such as
names, aliases, referenced reports, and aggregated
statistics as not critical and make them publicly avail-
able (TLP:WHITE), allowing them to be used as a ref-
erence.

Elements identifying concrete samples (hashes)
and the actual malicious code itself should be with-
held from public access (TLP:GREEN) in order to not
tip off the attackers or harm bystanders. Means of de-
tection such as YARA rules may be publicly sharable,
depending on their source of origin but can also be fur-
ther limited in distribution (up to TLP:AMBER).

These are best practices that have proven of value
based on experiences gathered in trust groups such as
closed-door mailing lists or conferences. For this rea-
son, Malpedia will be operated in favor of established
trust-mechanisms: The user base will be grown in an
invite-only way where users will have to be vetted by a
portion of the existing users in order to have their ac-
count activated.

Implementation of Trust Mechanisms

4.2 Ensure High Standards for Contribu-
tion Quality

To maintain a high quality, contributions will only be ac-
cepted from registered users but not without further
review. We use a double blind peer review model to
validate the quality of submissions before integrating
them into the corpus. We require at least two verdicts
per submission. Registered users may volunteer as re-
viewers.

4.3 Automation Support

The tool landscape for malware research has signifi-
cantly grown over the last years. To maximize the use-
fulness of the platform, the ways of interaction as pro-
vided through the website will also be made available
via a REST API to allow easy integration for third par-
ties. Additionally, direct access to the full corpus will
be offered to registered users.

6 Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

® ceoF

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

4.4 Baseline Data Set

Starting from scratch would likely be deterrent to the
willingness of users to contribute. Therefore, we have
bootstrapped Malpedia with reference data collected
in numerous malware investigations conducted over
the last five years. Additionally, we have systemat-
ically crawled publications (analysis reports, papers,
blog posts) of major institutions, such as AV and threat
intelligence companies and isolated samples as repre-
sentatives for more than 600 families. An overview of
the contents of this initial data set is given in Section 3
and a comparative analysis of the contained Windows
malware is given in Section 5.

4.5 Contextual Enrichment: Meta Data

Many malware families are given multiple names, for
example due to parallel discovery, company policy, or
simply personal taste. On many occasions, this has
caused unfavorable confusion within the malware re-
search community.

With Malpedia, we want to provide a central re-
source for tracking as many of these respective
aliases as we can identify and support them with con-
crete samples to build consensus on. Where appli-
cable, we also track recorded links between malware
families and threat actors, for which we also want to
provide a bookkeeping of aliases. To avoid duplica-
tion of effort, we integrate and feed data back to the
registers administered by the team of the Malware In-
telligence Sharing Platform (MISP) [6].

Additionally, we think it is beneficial to also collect
references to published research on malware families,
including analysis reports, blog posts etc. to enrich the
samples with contextual information. We hope that
this will provide analyst’s with information to bootstrap
their own analyses on.

Finally, we have structured our suite of evaluation
tools used in Section 5 in a way that it allows us to
easily integrate it directly into the Malpedia web ser-
vice. This allows us to continually provide updates on
comparative assessments on basic structural proper-
ties of all the malware families’ code bases as the cor-
pus grows.

5 A Comparative Structural Analy-
sis of Windows Malware

In this section, we focus on the subset of Windows
malware to perform a comparison of selected struc-
tural properties. The families are listed in the Ap-
pendix, Table 6. We use our chosen normalized repre-
sentation of dumps as motivated in Section 3.3. The
analysis is split up into three parts.

The first part focuses on PE headers. Based on our
experience, a majority of packers will simply unwrap
their carried payload to memory in its original form,
which allows us to inspect the actual PE headers of

the original malware families. Apart from finding out
in how many cases we have headers available, we can
check and compare many header fields that may be
relevant for analysts, such as the presence of header
magics (such as MZ/PE), if the binary is for 32/64bit, if
itis a DLL vs. an EXE, security properties, and so forth.
Of special interest are also compilation timestamps,
as these allow us to measure the age of our corpus
and provide temporal context within the development
of families. Features that characterize the workflow of
malware authors are hints on languages and compiler
versions used, including Rich Headers, which can give
some insights on the system environment that the pro-
gram was compiled in [7].

The second part examines properties of the ma-
licious code itself. However, we limit ourselves to a
very cursory analysis and will cover this topic in-depth
in a dedicated follow-up publication. We use our own
disassembler SMDA, which is optimized for function
coverage in arbitrary code buffers (such as the dumps
found in Malpedia) in order to derive key metrics of the
code graphs. Apart from that, we have a closer look
at the debugging information available and how this is
used e.g. for naming of malware families.

The third part gives an overview of Windows API
usage. We first classify three different import styles
and then use ApiScout [8], a tool we developed to stat-
ically identify references to the Windows API. Over the
data extracted, we perform a frequency analysis sim-
ilar to Zwanger et al. [9] to measure the popularity of
DLLs and API functions.

While we believe that we already have decent
coverage, be aware that these are our initial results
and that we will continually publish future statistics
through our platform as the corpus grows.

5.1 PE Header Analysis

The first analysis part focuses on data contained in PE
headers. As PE headers are the blueprints of Windows
executables, they contain a lot of meta data that can
be potentially useful e.g. for initial triage or as an out-
line when starting to analyze the malware in-depth. We
start by assessing the general availability of PE head-
ers in memory dumps because this determines the ap-
plicability of further methods. Because headers are
luckily available for 94.62% of the families considered,
we continue evaluating a range of header fields com-
paratively. This includes general characteristics, the
compilation timestamp, linker information, and struc-
tural information such as the presence of data direc-
tories.

For our analysis, we avoid the usage of PE parser
libraries because our input data are (potentially mod-
ifled) memory dumps and not clean on-disk versions
with intact header magics, which most parser li-
braries expect. Alternatively, we use a method we call
pe_check. It is built around the idea of specifically
avoiding the obvious header magics and instead locat-
ing a composition of mandatory header fields as orien-

Daniel Plohmann, Martin Claul}, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 7

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

Offset Hexdump Text @ MZ Magic
1) @ PE Magic
00000000:"4D5A9000 03000000 04000000 FFFFOO0O B8OOOOOO OOOOOOOO 40000000 OO0 MZ.......... YY.iZoooun.. Q...... © DO0S String

CO0000OD . vvvrete i A...

20:
00000040
00000060
00000080:

(5)

000000C0:~50450000 4C01050(97CF2275A 00000000 00000000 EGOGGZZPOBMOAOG@OOO@MOO
000000E0: 00000200 00000000 CAFEO100 00100000 00200200 00000010 00100000_00020000
00000100:50001@0 00000000 05000100 00000000 00501000 00040000 00000000%3004001@ Poviviiaiin, Q.
00000120: 00001000 00100000 00001000 00100000 0000CO00 10000000 OOBDOEOO 4BOOOOOO

00000140:"<data directories>

OE1FBAOE 00B409CD 21B8014C CD215468 69732070_726F6772 616D2063 616EGEGF
74206265 2072756E 20696E20 444F5320 6D6F646592EODODOA 24000000 00000000
498D63B3 ODECODEG,ODECODEO ODECODEO 608D6190 68886481 2D9E6283 669F2CC1
000000A0:_ 52696368 _ODECODEO_00000000_00000000 00000000 00000000_00000000_00000000

O Rich Header
© Machine

@ Num Sections
@ Timestamp

..0..2.112.L11This program canno
t be run in DOS mode....$.......

Rich.i.é.: O Characteristics
PE..L...!o Zovevunnn - T © Linker Info
........ 1o TN @ 05 Required

@ SubSystem
@® DllCharacteristics
@® Data Directories

et . .K...

Figure 1: PE header fields considered in the analysis. Here: PE32 variant.

tation points. Based on these we then deduce the po-
sition of the file and optional header to subsequently
directly access the fields of interest by their offset, as
shown in Figure 1.

The results of this analysis are grouped by the in-
dividual tests and shown in Table 1. We list results
both for individual samples and grouped by families.
In cases where samples of a family give a conflicting
result, we chose the majority value.

5.1.1 PE Header Availability

We start our evaluation with a group of tests cen-
tered around PE header availability. First, we perform
pe_check and to our surprise, 422 of 446 families
(94.62%) pass this test. Looking closer, we notice that
we cover 3 more families with pe_check than following
the usual routine of locating headers by the MZ magic.
This would be e.g. the method the popular Python li-
brary pefile.py follows, whose result we list for com-
parison.

In total there are only 86 samples in 30 families
that do not pass pe_check. Manual inspection of these
cases result in the following observations: for 39 sam-
ples (18 families) we find headerless position indepen-
dent shellcode, 17 samples (5 families) have a nulled
header (determined by size), 16 samples (7 families)
directly start with referenced data, 15 samples (5 fami-
lies) start with an self-constructed Import Address Ta-
ble (IAT) and 3 samples (2 families) perform an XOR
operation over their header (which could technically be
recovered). The disparity of 30 versus 24 families (as
shown in Table 1) is caused by some families having
fewer samples with modified header than without, trig-
gering the majority decision.

For 403 families (90.36%) we also locate one of the
following DOS Strings:

* This program cannot be run in DOS mode

* This program must be run under Win32

* This program must be run under Win64
On a side note, we have observed that the DOS string
"This program must be run under Win32/Win64"
seems specifically tied to Borland compilers.

Rich Headers, which can provide additional infor-
mation in this context [7], are present for 272 (60.99%)
families and are covered in Section 5.1.4.

5.1.2 General Characteristics

Next, we focus on a range of general characteristics.

First, we look at architecture required as deter-
mined by the PE header machine field. The vast ma-
jority of samples and families in Malpedia are tracked
as 32bit, with occasional 64bit versions. Only GHOLE,
a modified Corelmpact version used by threat actor
RocketKitten, is currently tracked exclusively as 64bit.
We think this number is mostly a result of our current
dumping procedure and will shift over time, as we have
unpacked 64bit variants or modules for 16 families.

Surprisingly, as much as 26.91% families’ core
components exist as DLLs, often being staged and
loaded by additional code.

With regard to the execution mode as defined by
subsystem, a majority of samples have been com-
piled to use GUI (85.92%) versus console (6.95%). This
makes sense, as it has the advantage of being less no-
ticeable by not running in a blocking fashion, spawning
an additional command shell window.

A closer look at the minimum OS version required
to execute the samples, 92.51% of these values are
distributed between version 4.0 (Windows NT) and 5.1
(Windows XP), despite the fact that most of our sam-
ples have been observed in 2014 and later. 30 families
(7.11%) require a version of Windows Vista or above,
with 11 of them having been observed in APT context.
Our explanation is that this is a result of precaution
by malware authors to have their tools as compatible
as possible with the typically unknown target environ-
ment. It should also be noted that due to us using only
versions up to Windows 7 (which is version 6.1), we do
not have dumps included that strictly require a OS ver-
sion higher than that. On the other hand, we have not
observed such malware yet, which would have been
noticed through execution failure during dumping.

Another feature that we have analyzed are the se-
curity properties that have been activated, namely sup-
porting SafeSEH, being compatible with No-Execute
(NX) and environments supporting dynamic rebasing
or Address Space Layout Randomization (ASLR). As
shown in Table 1, SafeSEH is supported by 73.09% of
the families. ASLR with 57.62% is a little more com-
mon than NX with 52.47% (family-level). Both features
combined are supported by about half (49.10%) of the
families.

8 Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

Samples Families
Sections Test True (%) False (%) n/a (%) | True (%) False (%) n/a (%)
pe_check 1122 (92.88) 86(7.12) 0(0.00) | 422 (94.62) 24(5.38) 0(0.00)
MZ Magic 1111 (91.97) 97(8.03) 0(0.00) | 419 (93.95) 27(6.05) 0(0.00)
f1 PE Magic 1114 (92.22) 94(7.78) 0(0.00) | 419 (93.95) 27(6.05) 0(0.00)
o DOS String 1003 (83.03) 205(16.97) 0 (0.00) | 403 (90.36) 43(9.64) 0(0.00)
Rich Header 766 (63.41) 442(36.59) 0(0.00) | 272(60.99) 174(39.01) 0(0.00)
pefile-parsable 1111 (91.97) 97 (8.03) 0(0.00) | 419 (93.95) 27 (6.05) 0 (0.00)
32bit* 1117 (92.47) 5(0.41) 86 (7.12) | 421(94.39) 1(0.22) 24 (5.38)
DLL 341(28.23) 781(64.65) 86 (7.12) | 120 (26.97) 302 (67.71) 24 (5.38)
519 573 SafesEH 939 (77.73) 183 (15.15) 86(7.12) | 326(73.09) 96(21.52) 24 (5.38)
R 529 (43.79) 593(49.09) 86 (7.12) | 234(52.47) 188(42.15) 24 (5.38)
ASLR 663 (54.88) 459 (38.00) 86 (7.12) | 257(57.62) 165 (37.00) 24 (5.38)
NX+ASLR 475(39.32) 647(53.56) 86(7.12) | 219(49.10) 203 (45.52) 24 (5.38)
Valid Timestamp 1060 (87.75) 62(5.13) 86(7.12) | 398 (89.24) 24(5.38) 24 (5.38)
Export Table 264 (21.85) 858 (71.03) 86(7.12) | 98(21.97) 324(72.65) 24 (5.38)
Import Table 1056 (87.42) 66 (5.46) 86(7.12) | 400 (89.69) 22(4.93) 24(5.38)
Resource Table 610 (50.50) 512 (42.38) 86 (7.12) | 293(65.70) 129 (28.92) 24 (5.38)
Exception Table 5(0.41) 1117(92.47) 86 (7.12) 3(0.67) 419(93.95) 24 (5.38)
Certificate Table 18 (1.49) 1104 (91.39) 86 (7.12) 12(2.69) 410(91.93) 24 (5.38)
Base Relocation Table 864 (71.52) 258(21.36) 86(7.12) | 310(69.51) 112 (25.11) 24 (5.38)
Debug 192 (15.89) 930(76.99) 86(7.12) | 99(22.20) 323 (72.42) 24(5.38)
515 Architecture 1(0.08) 1121(92.80) 86 (7.12) 0(0.00) 422(94.62) 24 (5.38)
" Global Ptr 0(0.00) 1122(92.88) 86 (7.12) 0(0.00) 422(94.62) 24 (5.38)
TLS Table 62(5.13) 1060 (87.75) 86 (7.12) 37(8.30) 385(86.32) 24 (5.38)
Load Config Table 317(26.24) 805(66.64) 86 (7.12) | 141 (31 61) 281(63.00) 24 (5.38)
Bound Import 6(0.50) 1116 (92.38) 86 (7.12) 5(1.12) 417(93.50) 24 (5.38)
IAT 925(76.57) 197 (16.31) 86(7.12) | 341(76.46) 81(18.16) 24 (5.38)
Delay Import Descriptor 39(3.23) 1083 (89.65) 86(7.12) 19 (4.26) 403 (90.36) 24 (5.38)
CLR Runtime Header 83(6.87) 1039 (86.01) 86(7.12) | 64(14.35) 358(80.27) 24(5.38)
Reserved 0(0.00) 1122(92.88) 86 (7.12) 0(0.00) 422(94.62) 24 (5.38)

Table 1: Summary of PE header field analysis, on sample and family-level of aggregation (x: False indicates 64bit).

With respect to the number of sections found,
84.31% of the samples have either 3, 4, or 5 sec-
tions. These correspond strongly to the most com-
mon section names found: .text (89.22%), .data
(80.66%), .reloc (78.43%), .rdata (70.68%), and
.rsrc (55.35%).

5.1.3 Timestamp Information

The next aspect we focus on is the temporal infor-
mation available to us. We first measure the age of
the current Malpedia corpus by looking up the date
when samples have been first seen on VirusTotal (de-
noted as Ty 1) and then compare this information with
the compilation timestamp as found in the PE header
(TpE).

Out of the 1208 files used in this evaluation, 1173
(97.10%) have a Ty value. As shown in Figure 2a,
most of the samples have been seen first within the
last 4 years, as the values between 2013 and 2017
make up 91.65%. While having less priority than keep-
ing up with recent developments, we hope to close the
gap of potentially relevant families of the past over
time.

With this data at hand, it is now interesting to
put the PE header’s compilation timestamp into per-
spective. After filtering out 86 samples that failed
pe_check, we can filter out another 62 samples that
have a value of either null or the default Delphi times-
tamp (1992-06-19T22:22:17). From those, we remove

another 30 samples where no T is available. Next,
we apply two plausibility checks. First, we check if the
timestamp difference (1 r — Trg) is negative, which
would mean the sample has been contradictingly ob-
served on VT before it was compiled, which is the case
for 38 samples. Second, using the range of 2006-12-11
(earliest Ty 7, a sample of Gozi) and 2017-10-11 (times-
tamp of our corpus snapshot) we identify 43 samples
(19 families) that fall outside of this range. Apart from
all of them having a timestamp difference (T —TrE)
of 7 years or more, we did contextual searches on the
families to ensure that those timestamps are in fact
the result of manipulations and that we can safely ex-
clude them.

This leaves us with 949 timestamp pairs of Ty 7
and Tpg, belonging to 367 families (82.29%), that are
potentially plausible. We have plotted their timestamp
differences (limited to one year, covering 314 families)
in Figure 2b. 10.43% samples have been seen on VT
within one day, 32.24% within 7 days, 48.78% within
the first month, and 78.30% within the first year af-
ter their compilation timestamp. Given that we did
not aim at finding the first (packed) sample for an un-
packed equivalent, we believe that this still shows that
PE compilation timestamps are very often at leastin a
meaningful distance to their first seen date, relying on
VirusTotal as a reference.

We have also looked closer at the remaining 206
cases in which the difference between VT First Seen
and the PE timestamp is longer than one year.

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 9

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS ® CeqyF

60 100 100.0

80 {80.0

40+

60 1600

30

Samples

s0f -/ H40.0

Samples per month

-+20.0

Cumulative coverage in percent

10

0 0.0

0
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 0 30 60 90 120 150 180 210 240 270 300 330 360

VirusTotal first seen timestamp

Timestamp tifference in days

(a) Malpedia corpus age, as indicated by VirusTotal first seen (b) Difference between VirusTotal first seen date and compi-
dates (T r) of 1173 (97.10%) samples. lation timestamp (Tvr — Tpg), 743 of 949 (78.30%) values
shown (less or equal to one year).

Figure 2: Temporal information about the corpus.

We attribute 75 samples (47 families) more or less
confidently to APT background. In these cases, files
are sometimes "published" to VT alongside reports.
Others are related to leaks, e.g. ShadowBrokers (Dou-
blePulsar, Fanny, Oddjob, ...) and exhibit a drastically
aged timestamp.

Another 59 samples (12 families) come from fam-
ilies where it is publicly known or otherwise plau-
sible that they are based on builders/configurators
(Zeus, Citadel, Ramnit, GPCode, RATs like Poisonlvy,
...). This allows for some of them to be used or appear
years later, hence having comparatively old compila-
tion timestamps.

For 26 samples (5 families) we can confirm forgery
that is also found across other header fields and as-
sume it is plausible that their PE compilation times-
tamps have been modified as well. These overlap with
families that had samples sorted out earlier when re-
ducing timestamp pairs to plausible ones (e.g. Locky,
Necurs).

The remaining 46 samples (36 families) are not
trivially explainable. Their timestamp offset may be
theresult of a variety of reasons, e.g. the system where
they were compiled on having massive clock-drift, the
samples having remained undiscovered/unsubmitted
foralongtime, or the timestamps being forged as well.

5.1.4 Compiler/Linker Information

A very interesting aspect in the context of the PE
header is actually the Major/Minor Linker information
field, as it may offer some insight into the toolkit prefer-
ences of malware authors. In order to determine these
values confidently, we adapted the signature database
of Detect-It-Easy (DIE) [10]. An overview of our results
is shown in Figure 3.

After de-duplicating on family-level, we note 513
data points for 446 families. Out of 194 families where
more than one sample is available, only 56 families

(28.87%) have samples being compiled with more than
one compiler/linker version. Malware authors seem
to have a tendency to stick with their tool chains, as
changes here only occurred in case of full rewrites of
their project, for example with GPCode and Sakula RAT,
which were both translated from C to Assembler. In all
other cases, we only observed authors updating to a
more modern version within the tool chain (2x within
MinGW/gcc and 49x within MSVC).

No information about the tool chains used could
be inferred in 48 (9.36%) cases, where no header was
available, or the version field was not plausible (i.e. be-
ing nulled, obviously forged, or otherwise a result of
header fragmentation).

We know of only a single family being written and
compiled in Go: AthenaGo. Also, only for a single fam-
ily GoAsm with Golink 0.40 was utilized (Sakula RAT).
For 3 families, we inferred that they were directly built
using Flat Assembler (FASM), skipping the linker step.

Pelles C’ PoLink was used in 3 (0.58%) cases and
Microsoft Assembler's (MASM) MIL was used in 12
cases (2.34%). Please note, that both PoLink and MIL
may also have been used in conjunction with FASM, as
FASM optionally allows using an external linker such
as both PoLink and MIL.

MinGW/gcc account for 17 cases (3.31%), being
split over 7 versions.

Borland compilers were used in 29 (5.65%) cases,
with the majority of them being Delphi (27). Delphi
Turbo Linker 2.25 and gcc 2.25 share the same ver-
sion number but are easily distinguished through the
respective characteristics found in the code.

The vast majority constitute families that were
compiled using various versions of Microsoft Visual
Studio. They are tied to 401 (78.17%) data points
over 10 versions. Looking at the distribution, we can
make two observations. First, a disproportional num-
ber of families are seemingly compiled with the out-
dated VC6, released in 1998. Possible explanations for

10

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

@ CeqyF THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS
400 +
I Incomplete
B Go
350
BN GoAsm
B rFASM
300
3 Pelles C
= B MASM
g 250 A .
o MinGW /gce
Gy
3 200 4 Borland
g Hl MSVC
E
= 150 A
Z
100 +
50
0'4-'7'*'-| | — |!T| T T T T T 1
MmO A mc YT AN TN T S SR YoMk o m
AN e O e S e e S — — — N — mvvm@oﬂﬂc\]\/
T8 T oo o H X T 0 10 O <f e~ -2 e
< HEET o TR g0 aaaanin S8BT Z
>~ 23 3 PO g Radaaaaa ENNOOHOOON
“ Lz g ~ e R NN TN
g = = S0 nnn s
E§ S > >>>I>I>>
L: o

Compiler / Linker

Figure 3: Distribution of compiler and linker versions, counted uniquely per family. Compiler groups (same color) are further
divided into versions. The gray boxes enclosing groups indicate the sum of of values for that group. The vast majority of
authors apparently use Visual Studio to build their code, with Visual Studio 2010 being the most common version.

this are that VC6 links statically against msvert.dll
per default, avoiding dependencies. On top of this,
it is linking against the last DLL version (which has
the status of a system DLL) before Microsoft’s policy
change of requiring developers to ship the appropriate
msvcrt.d11 version along their code (which lead to a
situation commonly referred to as "DLL Hell").

Second, all other MSVC versions are distributed
around VS2010, slightly leaning towards older ver-
sions. One explanation for this may be that many pro-
grammers stick to an environment that they are famil-
iar with, in the sense of "never touch a running system".

Next, we can incorporate the Rich Header [7] as an
additional measure to estimate the plausibility of the
information given in the linker fields. For the 766 sam-
ples in which a Rich Header is present (cp. Table 1),
we find 735 (95.95%) of them having a linker field num-
ber corresponding to a MSVC compiler. Drilling down
on these, at least 721 (98.10%) also have a version-
matching PID entry in the Rich Header, showing that
this information is reliable in almost all cases. We
only find deviations for families, where we earlier noted
that other header fields were likely forged (e.g. Necurs,
Locky, and Lurk).

5.1.5 Data Directories

With regard to the presence of data directories, we no-
tice that only Import Table (89.69%) and IAT (76.45%),
Base Relocation Table (69.51%), and Resource Table
(65.70%) appear in more than 50% of the families.

Out of the 192 samples having a Debug Directory,
163 (84.90%) contain references to PDB files, which
are handled more in-depth in Section 5.2.2.

The presence of a Load Config Table indicates the
presence of a directory of known, safe Structured Ex-
ception Handlers (SafeSEH, cp. Section 5.1.2), which
is the case for almost a third of the families (31.61%).
Note that way more families (326 or 73.09%) have
the SafeSEH field activated but may not include such
a directory for a number of reasons, such as not
using Structured Exception Handlers, linking against
modules not supporting SafeSEH, or being subsys-
tem:console applications [11].

An Export Table is found for 264 samples of 98
(21.97%) of the families. An interesting field to look at
in conjunction with Export Tables is the DLL field. Out
of 341 samples being DLLs, only 239 (70.09%) export
functions, meaning that the ones without either have a
fully functional D11Main routine (which is officially dis-
couraged by Microsoft) or get controlled through im-
plicitly known function offsets. On the other hand, 25
out of 781 samples (3.20%) being executables have an

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

1

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

Functions BBlocks Instructions Function Calls
min 3.00 25.00 30.00 2.00
25% 181.25 1437.25 9362.75 446.54
50% 438.50 4261.83 23833.62 1377.08
75% 1107.00 9765.78 54632.33 3593.75
max 26360.00 337386.50 1848787.00 113008.50
mean 1300.92 10954.50 63390.37 4582.13

(a) Control Flow Graph Statistics.

Functions BBlocks Instructions Function Calls
Functions 1.000 0.884 0.910 0.946
BBlocks 0.884 1.000 0.992 0.941
Instructions 0.910 0.992 1.000 0.960
Function Calls 0.946 0.941 0.960 1.000

(b) Pearson Correlation Coefficient (PCC).

Table 2: Results of the cursory code evaluation across 382 families, averaged values per family (64 .NET families excluded).

Export Table, which is possible but unusual behaviour
as well.

The 64 families (14.35%) having a CLR Runtime
Header are all .NET based and identical with those ex-
cluded from the Code and Windows API usage analy-
sis (cp. Sections 5.2 and 5.3).

TLS callback tables are available for 37 (8.30%) of
the families and 19 (4.26%) use Delay-Load Imports.
Only 12 (2.69%) of the families are signed, with 8 of
them being connected to APT activity.

We have observed a Bound Import Table only for
families written in MS VisualBasic (5 families, 1.12%)
and Exception Tables (0.67% of families) are only
found in families that also have 64bit binaries.

The Architecture and Reserved Directories are ex-
pectedly zero, in accord with the PE/COFF Specifica-
tion [12], and a Global Ptr Table is also found in none
of the families.

5.2 Code Analysis

For code analysis, we use our own recursive disas-
sembler called SMDA, which is based on Capstone [13]
and specifically optimized for the disassembly of ar-
bitrary code buffers, i.e. it is suited for dealing with
memory dumps as found in Malpedia. It implements
a semantically-aware method for Function Entry Point
(FEP) localization, oriented on the approach presented
by Andriesse et al. [14]. Using a slightly more ag-
gressive decision process for function identification, it
achieves better coverage than comparable tools such
as IDA Pro or radare2, at the cost of a slightly higher
false positive rate.

Because of the complexity and wealth of informa-
tion inferable from code, we limit ourselves to only a
few aspects covered with cursory analysis in this pa-
per. Instead, we will follow up with an in-depth eval-
uation of our method and an analysis of the malware
code base in a consecutive publication.

5.2.1 Cursory Control Flow Graph Analysis

Using SMDA, we have disassembled all samples and
extracted key indicators with regard to their Control
Flow Graphs (CFG). The results are shown in Table 2a.
Note that .NET families have been excluded and the
values have been previously aggregated on family-
level to only show representative values for x86/x64
machine code.

With regard to the number of functions, the small-
est type of malware found are typically downloaders
without any other functionality. In our corpus, exam-
ples for these minimalistic families are TinyLoader (3
functions), Dorshel (3 functions), Cabart (9 functions),
StegoLoader (13 functions), Hamweq (14 functions),
and Harnig (15 functions). Generally, the families be-
low the first quartile (181 functions) are reigned by
downloaders, modularized RAT servers, and purified
ransomware. They also include some malware related
to spam (e.g. Asprox, Matsnu, Pushdo).

The families between the first and third quartile
(181 to 1107 functions) often include several of the
well-known behavioral aspects tied to malware, such
as information stealing, enabling financial theft, spam,
DDoS, downloading and ransomware.

The families beyond the third quartile typically fall
in either of two categories. First, some of them simply
bring a vast range of functionality to the table. Sec-
ond, the others are massively inflated through the ex-
tensive use of statically linked third-party libraries, in-
cluding OpenSSL, Boost C++, or various Delphi mod-
ules. In fact, out of the 26 families identified as being
written in Delphi, 21 fall above the third quartile.

Looking at the other values shown in Table 23, it
stands out that they very strongly correlate with each
other across all quartiles, further underlined by the
Pearson Correlation Coefficients shown in Table 2b.
Overall, the ratio of basic blocks to functions is situ-
ated between 8 and 10, the ratio of instructions to func-
tions is at around 49 and 54, and the ratio of function
calls to functions between 2.4 and 3.2. Similarly, basic
blocks consist on average of 5.5 to 6.2 instructions.

5.2.2 Program Database Information (PDB)

Microsoft [15] has defined a proprietary standard for
creating meta information during compilation that can
be used to enrich debugging sessions. A fragment oc-
casionally found in malware are path specifications to
the corresponding program database (PDB) files.

As already mentioned in Section 5.1.5, 163 sam-
ples belonging to 111 families (24.98%) in our data set
contain references to PDB files. Looking closer at the
paths of these PDB files, we can identify 32 some-
what expressive user names that are not as generic
as "User", "Administrator", or the like. Furthermore, we
find 49 references that can be interpreted as project
names as chosen by the authors and 40 of them di-
rectly correspond to a name or alias that this family is

12 Daniel Plohmann, Martin Clau3, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

referred to. This shows that in case where information
of the author’'s own naming is available, that this is of-
ten adopted as a reference by malware researchers.

5.3 Windows API Usage Analysis

In this section, we study how malware families make
use of the Windows API. Generally, from a software
analysis point of view, a program’s interaction with an
API can reveal a lot of insight into the behaviour of
code. For this very reason, the inspection of API in-
teractions is often an essential cornerstone when con-
ducting detailed malware analysis, as it may be used
as a pointer to the code regions responsible for e.g.
persistence, networking, or other functional aspects
of interest. We first lay out our methodology for the
analysis and give a short introduction to ApiScout [8]
including a showcase of its accuracy on a small selec-
tion of benign Microsoft binaries. Next, we apply ApiS-
cout to the current data set and evaluate aspects such
as the availability of Windows API import information
in malware memory dumps as well as frequencies of
occurrence for DLLs and APIs across malware fami-
lies.

5.3.1 ApiScout: API Information Recovery from
Memory Dumps

As explained in Section 3.3, we create memory dumps
for all malware samples contained in Malpedia using
a small set of reference VMs. Since we control the en-
vironment dumps are taken from, we can exploit the
associated knowledge in our favour, e.g. by inventoriz-
ing all DLLs present on the system. Using this data, we
can infer a complete view of the structure of the Win-
dows API on a process-level perspective. It is also of
importance that DLLs are usually loaded at the same
base address across all processes [16] and this inven-
torization procedure results in a listing of all offsets of
exports they provide.

In consequence, we can derive the actual ad-
dresses at which API functions will be available and
through which they will be referenced in the loaded
processes of programs, including malware. Dumping
of malware has another benefit: It yields us a snap-
shot of the (unpacked) malware in memory during its
execution. This means we may be able to observe
API entry points dynamically loaded [17] and not just
those referenced through the regular method of us-
ing the PE header’s import tables. Using runtime VM
snapshots also solves any issues potentially arising
from dynamic rebasing through ASLR [16] since we
only need to ensure that every DLL has been loaded
once in order to have it assigned its randomized off-
set. We can then index these offsets along the base
addresses during the inventorization process. The in-
ventorization of our reference VMs results in 57,315 ex-
ports from 134 DLLs for Windows XP SP3 and 105,765
exports from 382 DLLs for Windows 7 SP1 64bit. Re-
moving redundancies, we end up with 59,366 unique

API functions in both systems combined. This lower
number is explained by Windows 7 64bit containing
variants of both 32bit and 64bit DLLs, needed for com-
patibility reasons.

Given a database of all exports of DLLs present in
the system, we can now perform a lookup for arbitrary
DWORDs/QWORDs and check if they potentially match
an inventorized API address. This is the core idea of
ApiScout and has been implemented in a library pro-
vided on GitHub [8]. For ApiScout, we avoid making
structural assumptions about input buffers presented
and simply scan every DWORD/QWORD linearly for po-
tential APl address identity. This way, we can handle
shellcode and mapped PE files the same way.

To remove potential false positives (FPs), we in-
clude a parameter to optionally filter to import refer-
ences that appear in groups (as is usually the case for
regular structures, such as an IAT). If set, the filter will
remove all import references that do not have a neigh-
bour within a certain range. In the following, we use 32
bytes as filter width.

We performed a small test evaluation to measure
the accuracy of ApiScout. We took 15 benign system
binaries as found in Windows and dumped their mem-
ory during execution. Next, we parsed their import
and delay import tables to be used as ground truth.
In this scenario, ApiScout already achieved an F-Score
of 0.991 and 0.995 with the neighbour filter activated.
Manual inspection of the deviations reveals that ApiS-
cout finds all entries in the respective import address
tables (IATs) resulting in no recorded false negatives.

False Positives are found for only three dumps:
explorer.exe, mmc.exe, and cmd.exe. To our
surprise, all three of these programs make use
of dynamic API loading during their runtime via
kernel32!GetProcAddress. As this mechanism
works around the Import Table, it explains why these
imported API functions are not covered by the ground
truth, which is based on import tables exclusively. This
leads to a total of 5,367 correctly identified API func-
tions and technically 51 FPs, which however are also
entirely dynamic imports used by the respective pro-
grams and identified by ApiScout. This shows that
ApiScout can be used to identify imports of Windows
API functions as found in dumps of programs with
high precision. However, note that ApiScout does not
check if the offsets discovered are referenced by any
code and therefore still should be taken as an approx-
imation of the actual APl interactions.

5.3.2 API Information Availability

When analyzing malicious software, the interaction of
code with the Windows API often serves as an impor-
tant cornerstone. Looking at how many malware fami-
lies may have information on their Windows APl usage
available, we can quickly exclude 64 out of 446 fami-
lies (14.35%) which have been previously identified (cp.
Section 5.2) being written using the .NET framework,
because in this case the import model can not be eas-
ily correlated with traditional Windows APl usage.

Daniel Plohmann, Martin Claul}, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 13

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS ®

CECyF

PE Dynamic
Imports | o e — Imports
P 7 ~ ~
’, ’ N N
/ ’ - N

/ /7 283% T\
I/ 46.2% 0\ 199%
! -7 " ‘
I 1 !
i / 1 \\ 1
\ ,’ \ 0.3% [Y !
v ;S v/
\ I \ \
\ 0.5% N\ 705% 4 ¢
‘{ N ’)//
-,
‘\\5—_—> ~__—”'
\ /
\ /
\ 7/
N 4.2% yr
e >
S ——— -
Obfuscation

Figure 4: Distribution of Import Style for Windows APIs
across 382 families (64 .NET families excluded).

However, we can investigate the remaining 382
families and check if they have API information avail-
able for analysis identifiable with ApiScout. Addition-
ally, we can check for the regularity of references to the
Windows API or if interactions happen in a concealed
way, i.e. using obfuscation [18]. In order to distinguish,
we have defined three classes of Import Styles:

« Static (i.e. regular) imports using the PE header’s

import table.

+ Dynamic imports of exact WinAPI function ad-
dresses that are cached within the memory oc-
cupied by the malware and hence are still de-
tectable by ApiScout.

+ Custom import schemes that we label as "obfus-
cation" and explain in the following.

The results of this analysis are shown in Figure 4.
Please note that we did not investigate every API ob-
fuscation scheme in full detail and therefore did not ex-
tract the actual collection of APIs used by these fam-
ilies. It is also likely that we missed API obfuscation
schemes due to not employing in-depth code analy-
sis methods in this evaluation, meaning that the actual
fraction may be higher than displayed.

First, we observe that almost half (46.2%) of the
families collected use static imports exclusively. We
believe that this import style similar to most regular
programs works sufficiently well for many malware au-
thors as it allows them to get along without adding po-
tentially sophisticated methods that carry the risk of
failure. It may also reduce the detection surface as
their malware will not have a suspiciously low num-
ber of imports and will show fewer dynamic loading
(e.g. LoadLibrary/GetProcAddress), which is usually
recorded during the execution in dynamic analysis sys-
tems such as sandboxes.

Second, almost another half (49.0%) of families
uses dynamically loaded imports, optionally combined

with static imports or obfuscation schemes. In the
cases where the dynamic loading is combined with an-
other method, it is interesting to dissect the parts of
the Windows API that malware authors deem worthy
to treat in a specific way. Looking at the overlap be-
tween families using static and dynamic imports, we
identify 108 families using both methods. For these,
we have found between 1 and 263 dynamically im-
ported API functions with a median of 21 and an aver-
age of 42.81(or 24.26% of API functions these families
import overall). Here, it seems that malware authors
indeed try to hide suspicious activity, as about 40% of
the exclusively dynamically loaded API functions cor-
respond typically to behaviors such as process control,
process injection, and network communication. As a
side note, about 3.45% of these API functions have
been redundantly imported by both the static and dy-
namic method.

Finally, we found at least 5.5% of the families using
obfuscation schemes for which API function informa-
tion is not recoverable with ApiScout. Exemplary, we
have identified the following obfuscation methods be-
ing used. 8 families are resolving APIs every time they
intend to use them (Shifu, StegoLoader, ...). Another
7 families store their imports in a separate, dedicated
memory segment on the heap (Cryptowall, SolarBot,
...), while 2 families manage their imports on the stack
(Poisonlvy and Dorshel). One family each build their
own jump-table instead of using an API function offset
table (Andromeda), add 5 bytes upon the API address
likely to avoid hooks (Chthonic), build an on-demand
offset table (Dridex), or store imports XORed with a
static key (Qadars).

In conclusion, we note that for a majority of
families information about interactions with the Win-
dows API are easily recoverable and happen naturally
through direct references to the function offsets within
the respective DLLs.

5.3.3 DLL and API Usage Frequencies

Another interesting viewpoint on Windows APl interac-
tion are the frequencies with which different DLLs and
APIs are used across all families.

Table 4 lists the general characteristics of Win-
dows API usage. Zero API and DLL imports correlate
with families using pure obfuscation schemes.

API Functions DLLs

min 0.00 0.00
25% 84.08 5.69
50% 122.25 8.00
75% 191.71 10.74
max 592.00 24.00
mean 150.26 8.32
Total Observed 3693.00 59.00

Table 4: Occurrence frequencies per family (64 .NET families
excluded).

With 592, The most APIs are used by Dark-
Comet [19], a fully fledged RAT written in Delphi. With
24, the most DLLs are used by ThumbThief [20], whose

14 Daniel Plohmann, Martin Clau3, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

API Occurrences DLL Occurrences
1 kernel32.dlI'Sleep 330(86.39%) kernel32.dll 363 (95.03%)
2 kernel32.dll'CloseHandle 326 (85.34%) ntdil.dll 352 (92.15%)
3 kernel32.dIl'GetModuleHandle 323 (84.55%) advapi32.dll 302 (79.06%)
4 kernel32.dll!CreateFile 314 (82.20%) user32.dll 293 (76.70%)
5 kernel32.dll!'WriteFile 312 (81.68%) shell32.dll 220 (57.59%)
6 kernel32.dIl'GetProcAddress 312 (81.68%) ws2_32.dll 206 (53.93%)
7 kernel32.dll!GetModuleFileName 307 (80.37%) wininet.dll 161 (42.15%)
8 kernel32.dll'LoadLibrary 303(79.32%) ole32.dll 151 (39.53%)
9 kernel32.dII'ExitProcess 293 (76.70%) shlwapi.dll 140 (36.65%)
10 kernel32.dII'ReadFile 285(74.61%) oleaut32.dll 110 (28.80%)
11 kernel32.dIl'GetCurrentProcess 280 (73.30%) gdi32.dll 98 (25.65%)
12 kernel32.dll'GetTickCount 279 (73.04%) msvcrt.dll 84 (21.99%)
13 ntdIl.dIl'RtIGetLastWin32Error 274 (71.73%) crypt32.dll 68 (17.80%)
14 ntdildlRtlAllocateHeap 261(68.32%) iphlpapi.dll 50 (13.09%)
15 kernel32.dIl'WideCharToMultiByte ~ 261(68.32%) psapi.dil 48 (12.57%)
16 kernel32.dll!CreateThread 257 (67.28%) netapi32.dll 43 (11.26%)
17 kernel32.dllIMultiByteToWideChar 252 (65.97%) urimon.dll 40 (10.47%)
18 kernel32.dll'TerminateProcess 246 (64.40%) version.dll 38 (9.95%)
19 kernel32.dll!GetCurrentProcessld 244 (63.87%) mprdll 33(8.64%)
20 ntdIl.dIl'RtIEnterCriticalSection 241(63.09%) winhttp.dll 28 (7.33%)

Table 3: Most common APIs and DLLs across all families (excluding .NET)

loaderincludes a variety of functionality for fingerprint-
ing the system it is attacking. On average we observed
8 DLLs providing access to around 150 API functions
per malware family. It is also notable that we found a
total of 3,693 Windows API functions being used, out
of 59,366 unique API functions tracked in the ApiScout
databases (WinXP and Win7 combined).

The most common APIs and DLLs are listed in Ta-
ble 3. Please note that we have grouped the respec-
tive ANSI and Unicode variants of API functions (such
as LoadLibraryA and LoadLibraryW) for this table into
single representatives, reducing the number of unique
API functions from 3,693 to 3,316.

To our surprise, kernel32.d11!Sleep turned out
to be the most common API function used across all
families. Our interpretation for this is that malware,
considered as a form of a somewhat autonomously
acting program, needs to temporally organize its be-
haviour. In that sense, Sleep offers applicability in a
multitude of cases, such as controlling communica-
tion frequencies (C&C), ensuring persistence (e.g. reg-
istry and file-system lookups), or delaying execution
(e.g. as an anti-analysis method).

300 |

250

200

Occurrence in Families

1500 2000 2500 3000 3500

WinAPI Function

Figure 5: Occurrence frequency of WinAPI functions with re-
gard to number of families they appear in.

Many other APl functions are centered
around the topic of execution control. This
includes aspects such as dynamic imports
(GetModuleHandle, GetProcAddress, LoadLibrary),
handles (CloseHandle, GetCurrentProcess), error
handling (GetLastWin32Error), or self-termination
(ExitProcess, TerminateProcess). As expected,
file-system interaction (CreateFile, WriteFile,
ReadFile) is also very commonly found. It is notable
that not a single network-related API function is within
the top 20 list. We believe that this is explained by
the freedom of implementation offered by the Win-
dows API and also reflected by the most commonly
used DLLs. Assuming a malware author wants his
malware to communicate with a C&C server using the
HTTP protocol. They now can choose between us-
ing wininet.d11 for access to high-level functions,
use the more service-oriented winhttp.d11, or opt for
ws2_32.d11 and re-implement simplified HTTP han-
dling themselves.

This observation carries on into the fact that the
concrete composition of API functions used by a mal-
ware family seems to be heavily characteristic for that
family. Figure 5 shows for every of the 3,693 Windows
API functions in how many malware families they ap-
pear.

Discounting families using obfuscation and
.NET (360 remain), only kernel32.d11!Sleep and
kernel32.d11!CloseHandle appear in more than 90%
of families. Furthermore, only 44 API functions ap-
pear in more than 50% of the families. Taking the
average number of API functions per family from Ta-
ble 4, the API function residing in position 150 would
be kernel32.d11!WaitForMultipleObjects, whichis
present in only 23.89% of the families. Looking the
other way around, a massive 3,320 (89.90%) of all
observed API calls appear in less than 10% of the fam-
ilies. We believe that this observation on the disparity
of APl compositions per family supports the effec-
tiveness of the general idea behind approaches like
ImpHash [21] and ImpFuzzy [22].

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 15

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

Because looking at individual API functions has
limited expressiveness, we have decided to define 12
context groups with 93 sub-contexts that can be used
to group API functions by their potential field of use.
We have categorized 3817 of the 4239 (90.04%) API
functions found in all samples, which cover 99.41% of
individual API function appearances of our test data
set. This functionality has also been integrated into
ApiScout and will be updated as needed.

Our results for evaluating API function frequencies
using context groups are listed in Table 5.

Context Occurrences

1 Execution Control 367 (96.07%)
2 Memory 361(94.50%)
3 File System 353 (92.41%)
4 System 353 (92.41%)
5 String 352 (92.15%)
6 Network 312 (81.68%)
7 Time 304 (79.58%)
8 Registry 264 (69.11%)
9 GUI 248 (64.92%)
10 Other 210 (54.97%)
1 Device 193 (50.52%)
12 Crypto 175 (45.81%)

Table 5: Occurence frequencies of API context groups by
family (excluding .NET).

As can be seen, only about four in five families
exert network functionality. This is easily explained
with families that require no immediate control to
execute their intentional behaviour, or that are in-
strumented by other families. Examples for this are
purely destructive wipers or information collectors
that are dropped by other malware. Another exam-
ple is ransomware in which the criminals require their
victims to contact them actively via email instead of
establishing a communication channel themselves
(e.g. for sending back encryption keys). A bit sur-
prisingly, almost equally as many families interact
with API functions providing time information, where
the concrete functions used to query are partitioned
into kernel32.d11!GetSystemTimeAsFileTime
(179), kernel32.d11!GetLocalTime (114), and
kernel32.d11!GetSystemTime (86). The seemingly
low number of families using Windows API functions
related to Cryptography is explained with a likely high
dark figure of authors using external code for popular
algorithms such as CRC32, RC4, and AES instead of
relying on the Windows API.

6 Related Work

There have been some efforts to collect and organize
malware in the past. Nativ et al. [23] have been col-
lecting and providing malware samples organized by
families in their project "theZoo". Freyssinet [24] stud-
ied the malware ecosystem in detail, primarily focus-
ing on botnets and collected meta data information on
412 malware families, organized and published in [25].
The Malware Wiki [26] is another extensive resource
collecting meta data and high level descriptions for

various malware families. MITRE organizes the Ad-
versarial Tactics, Techniques, and Common Knowl-
edge (ATT&CK) [27] knowledge base, focusing primar-
ily on APT activity and tying behaviours to actor groups
and malware families. The collective of Malware-
HunterTeam run the web service ID Ransomware [28],
focusing on the identification of ransomware based on
encrypted files and ransom notes. They track 497 dis-
tinct variants. Malpedia already has significant overlap
with all of the above collections and we plan to cover
as many as possible of the families contained in them
with samples in the future. In a preservatory fashion,
Hypponen provides a collection of 86 families of 1980s
and 1990s malware in the Malware Museum [29].

Guidelines for malware naming schemes have
been proposed by e.g. CARO [30] in 1991 and
MITRE [31] in 2006. Even these early works already
point out the tendency of introducing synonyms for
malware family names instead of agreeing on unam-
biguous identifiers.

Sebastian et al. [32] experimented with the consis-
tency of AV detection labels, noting significant noise
that they addressed with their tool AVClass. They also
emphasize that analysts have a need for accurate mal-
ware identification. Lever et al. [33] recently conducted
a large scale analysis involving 26.8 million malware
samples, primarily focusing on malware traffic. Using
AVClass, they identified 3,834 clusters of families with
more than 10 samples within their data set. This fur-
ther supports our claim that the space of families and
versions is way smaller than the number of packed
samples. Ye et al. [34] recently provided a compre-
hensive overview of works that propose malware de-
tection techniques using data mining. The collection
of features extracted from the surveyed works is also
highly compatible with Malpedia.

Belaoued et al. [35] extracted Windows API func-
tion frequencies from a selection of 50 malware
samples for malware detection. Their API function
frequency table overlaps in 50% with our results.
Zwanger et al. [9] conducted an analysis of Windows
API function call distribution from a kernel-mode per-
spective. They showed that malware and benign
drivers expose discriminable characteristics in their
APl usage.

Rossow et al. [1] described best practices for de-
signing malware experiments, surveying related work
for their conformance with these requirements. Their
work has also heavily inspired decisions taken in this
work.

7 Conclusion

In this paper, we addressed the continuous lack of
quality data suitable for static malware analysis. First,
we defined requirements for a such a malware corpus
tailored for static analysis. We next presented our ef-
forts for a vetted curation and inventorization platform
called Malpedia, including a baseline data set of more
than 600 malware families.

16 Daniel Plohmann, Martin Clau3, Steffen Enders, EImar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

To show the usefulness of the data set, we per-
formed a comprehensive comparative analysis of
structural features extracted from 446 families of
cleanly labeled Windows malware, primarily focusing
on PE header characteristics and Windows APl usage.

Our key findings are the following. Packers mostly
serve just as an initial barrier against detection and the
majority of unpacked samples are quite well-formed
and can be conveniently treated with methods of static
analysis. The information extracted even with just cur-
sory methods draws a consistent picture and gives an
interesting insight in preferences and choices of mal-
ware authors. We firmly believe that the number of
unpacked samples required to expressively represent
the malware landscape interpreted as families and ver-
sions is many orders of magnitude smaller than the
number of packed samples found in the wild. We think
that the experiments conducted in this work demon-
strate that Malpedia can serve as a solid foundation for
various future research activities. By responsively pub-
lishing this data set through our platform for free, we
hope it will contribute as a reference for identification
and labeling in analysis processing chains or serve as
a starting point for more in-depth studies requiring a
significant number of malware families.

Acknowledgment: The authors would like to ex-
press eternal gratitude to the Shadowserver Founda-
tion for continuously supporting malware research.
We would also like to thank the anonymous reviewers
of Botconf as well as Slavo Greminger for their valu-
able feedback.

Author details

Daniel Plohmann

Fraunhofer FKIE
Zanderstr. 5, 53177 Bonn
daniel.plohmann@fkie.fraunhofer.de

Martin Clau3

Fraunhofer FKIE
Zanderstr. 5, 53177 Bonn

martin.clauss@fkie.fraunhofer.de

Steffen Enders

TU Dortmund
Otto-Hahn-Str. 14, 44227 Dortmund

steffen.enders@tu-dortmund.de

Elmar Padilla

Fraunhofer FKIE
Zanderstr. 5, 53177 Bonn
elmar.padilla@fkie.fraunhofer.de

References

[1 C. Rossow, C. J. Dietrich, C. Kreibich, C. Grier,
V. Paxson, N. Pohlmann, H. Bos, and M. van Steen,
“Prudent Practices for Designing Malware Exper-
iments: Status Quo and Outlook,” in Proceedings
of the 33rd IEEE Symposium on Security and Pri-
vacy (S&P), San Francisco, CA, 2012.

[2] AV-Test GmbH, “Malware Statistics,” October
2017. Tracking website by AV-Test: https://wuw.
av-test.org/en/statistics/malware/.

[3

—_—

T. Barabosch, N. Bergmann, A. Dombeck, and
E. Padilla, “Quincy: Detecting host-based code in-
jection attacks in memory dumps,” in Proceedings
of the 14th International Conference on Detection
of Intrusions and Malware, and Vulnerability As-
sessment (DIMVA), Bonn, Germany, 2017.

[4

—_—

T. Barabosch, S. Eschweiler, and E. Gerhards-
Padilla, “Bee master: Detecting host-based code
injection attacks,” in Proceedings of the 11th Inter-
national Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA),
London, UK, 2014.

FIRST Traffic Light Protocol Special Interest
Group, “TRAFFIC LIGHT PROTOCOL (TLP)”
FIRST Standards Definitions and Usage Guid-
ance: https://first.org/tlp/.

[5

—_—

[6] C. Wagner, A. Dulaunoy, G. Wagener, and A. Ik-
lody, “Misp: The design and implementation of a
collaborative threat intelligence sharing platform,’
in Proceedings of the 2016 ACM on Workshop
on Information Sharing and Collaborative Security,
pp. 49-56, ACM, 2016.

[71 G. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch,
Z.Hanif, A. Zarras, and C. Eckert, “Finding the Nee-
dle: A Study of the PE32 Rich Header and Respec-
tive Malware Triage,” in Proceedings of the 14th
Conference on Detection of Intrusions and Mal-
ware and Vulnerability Assessment (DIMVA), Bonn,
Germany, 2017.

[8] D. Plohmann, “ApiScout: Painless Windows API
information recovery,” April 2017. Blog post
for ByteAtlas: http://byte-atlas.blogspot.
de/2017/04/apiscout.html.

[9] V. Zwanger and F. C. Freiling, “Kernel mode api
spectroscopy for incident response and digital
forensics,” in Proceedings of the 2nd ACM SIG-
PLAN Program Protection and Reverse Engineer-
ing Workshop (PPREW), Rome, Italy, 2013.

Horsicqg, “Detect-It-Easy,” 2014. GitHub Repos-
itory: https://github.com/horsicq/Detect-
It-Easy/.

Microsoft, “/SAFESEH (Image has Safe Exception
Handlers),” tech. rep., Microsoft, 2017. MSDN
Article: https://msdn.microsoft.com/en-us/
library/9a89h429 (v=vs.110) .aspx.

[10]

[11]

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 17

daniel.plohmann@fkie.fraunhofer.de
martin.clauss@fkie.fraunhofer.de
steffen.enders@tu-dortmund.de
elmar.padilla@fkie.fraunhofer.de
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://first.org/tlp/
http://byte-atlas.blogspot.de/2017/04/apiscout.html
http://byte-atlas.blogspot.de/2017/04/apiscout.html
https://github.com/horsicq/Detect-It-Easy/
https://github.com/horsicq/Detect-It-Easy/
https://msdn.microsoft.com/en-us/library/9a89h429(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/9a89h429(v=vs.110).aspx

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Microsoft, “PE Format (Windows),” tech.
rep., Microsoft, 2017. MSDN Article:
https://msdn.microsoft.com/en-us/library/
windows/desktop/ms680547 (v=vs.85) . aspx.

N. A. Quynh, “Capstone disassembly engine.”
http://www.capstone-engine.org/.

D. Andriesse, J. Slowinska, and H. Bos, “Compiler-
agnostic function detection in binaries,” in Pro-
ceedings of the 2nd IEEE European Symposium
on Security and Privacy (EuroS&P), Paris, France,
2017.

Microsoft, “Debug Interface Access SDK," 2015.
MSDN Article: https://msdn.microsoft.com/
en-us/library/x93ctkx8. aspx.

M. Russinovich and D. A. Solomon, Windows In-
ternals: Including Windows Server 2008 and Win-
dows Vista, Fifth Edition. Microsoft Press, 5th ed.,
2000.

M. Galkovsky, the Dynamic Way,’
November 1999. Article for MSDN:
https://msdn.microsoft.com/en-us/library/
ms810279. aspx.

“DLLs

M. Suenaga, “A Museum of APl Obfuscation on
Win32,” tech. rep., Symantec, 2009.

B. Farinholt, M. Rezaeirad, P. Pearce, H. Dhar-
mdasani, H. Yin, S. Le Blond, D. McCoy, and
K. Levchenko, “To catch a ratter: Monitoring the
behavior of amateur darkcomet rat operators in
the wild,” in Proceedings of the 38th IEEE Sympo-
sium on Security and Privacy (S&P), San Jose, CA,
2017.

T. Gardon, “New self-protecting USB trojan able to
avoid detection,” March 2016. Blog post for ESET:
https://www.welivesecurity.com/2016/03/
23/new-self-protecting-usb-trojan-able-
to-avoid-detection/.

FireEye, “Tracking Malware with Import Hash-
ing,” January 2014. Blog post for FireEye:
https://www.fireeye.com/blog/threat-
research/2014/01/tracking-malware-
import-hashing.html.

S. Tomonaga, “Malware Clustering us-
ing impfuzzy and Network Analysis,
March 2017. Blog post for JPCERT/CC:

http://blog. jpcert.or.jp/2017/03/malware-
clustering-using-impfuzzy-and-network-
analysis---impfuzzy-for-neo4j-.html.

[23] Y. Nativ, L. Ludar, and S. Shalev, “theZoo,” 2014.

GitHub Repository: https://github.com/ytisf/
theZoo.

[24] E. Freyssinet, Lutte contre les botnets : analyse et

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

stratégie. PhD thesis, Université Pierre et Marie
Curie - Paris VI, 2015.

E. Freyssinet, “Botnets.fr,” 2011. Wiki: https:
//wuw.botnets.fr/wiki/Main_Page.

Various, “Malware Wiki," 2009. Wiki: http://

malware.wikia.com/wiki/Main_Page.

MITRE, “Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK),” 2015. Wiki:
https://attack.mitre.org/wiki/Main_Page.

MalwareHunterTeam, “ID Ransomware,” April
2016. WebService: https://id-ransomware.
malwarehunterteam.com/index. php.

M. Hypponen, “Malware Museum,” February
2016. Archive: https://archive.org/details/
malwaremuseum.

F. Skulason, A. Solomon, and V. Bontchey, “A new
virus naming convention,” 1991. Article by CARO:
http://www.caro.org/articles/naming.html.

CME Editorial Board, “The Common Malware
Enumeration (CME),” November 2006. Article
by CARO: https://cme.mitre.org/about/faqgs.
html.

M. Sebastian, R. Rivera, P. Kotzias, and J. Ca-
ballero, “Avclass: A tool for massive malware la-
beling,” in Proceedings of the 19th International
Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), Evry, France, 2016.

C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and
M. Antonakakis, “A lustrum of malware network
communication: Evolution and insights,” in Pro-
ceedings of the 38th IEEE Symposium onSecurity
and Privacy (S&P), San Jose, CA, 2017.

Y. Ye, T. Li, D. Adjeroh, and S. S. lyengar, “A sur-
vey on malware detection using data mining tech-
niques,” ACM Computing Surveys (CSUR), 2017.

M. Belaoued and S. Mazouzi, “An MCA Based
Method for API Association Extraction for PE Mal-
ware Categorization,” International Journal of In-
formation and Electronics Engineering, 2015.

18

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
http://www.capstone-engine.org/
https://msdn.microsoft.com/en-us/library/x93ctkx8.aspx
https://msdn.microsoft.com/en-us/library/x93ctkx8.aspx
https://msdn.microsoft.com/en-us/library/ms810279.aspx
https://msdn.microsoft.com/en-us/library/ms810279.aspx
https://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/
https://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/
https://www.welivesecurity.com/2016/03/23/new-self-protecting-usb-trojan-able-to-avoid-detection/
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html
http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html
http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html
https://github.com/ytisf/theZoo
https://github.com/ytisf/theZoo
https://www.botnets.fr/wiki/Main_Page
https://www.botnets.fr/wiki/Main_Page
http://malware.wikia.com/wiki/Main_Page
http://malware.wikia.com/wiki/Main_Page
https://attack.mitre.org/wiki/Main_Page
https://id-ransomware.malwarehunterteam.com/index.php
https://id-ransomware.malwarehunterteam.com/index.php
https://archive.org/details/malwaremuseum
https://archive.org/details/malwaremuseum
http://www.caro.org/articles/naming.html
https://cme.mitre.org/about/faqs.html
https://cme.mitre.org/about/faqs.html

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 3, No. 1, DEC. 2017 BOTCONF 2017 PROCEEDINGS

Appendix

7ev3n
AgentTesla
Alphanc
Arefty

Aveo

Banatrix
BlackRevolution
Buhtrap
CadelSpy
Cerber

Client Maximus
CodeKey
CoreShell
Crypt0lOcker
Cryptorium
Cuegoe
DarkPulsar
DeputyDog
DirCrypt
Downeks
DuQu

Enfal

Xtreme RAT
Filelce Ransomware
Fobber

Ghole
GodzillaLoader
Gratem

Havex RAT
Hesperbot
HtBot
ImminentMonitor RAT
isr_stealer
Jigsaw
Karagany
KhRAT

Kovter
LatentBot
Locky
MadMax
MatrixRansom
Mirai

Mokes
Murofet
Necurs
NeutrinoPOS
Nymaim
OvidiyStealer
Ploutus ATM
Poweliks Dropper
Pykspa
Ramdo
RawPOS
Remexi

Rofin

rtm

Satana
Serpico

Shujin

Skyplex
SolarBot
Strongpity
Sys10
Terminator RAT
Tinba
TorrentLocker
Turnedup
unknown_005
unknown_026
unknown_034
VenusLocker
WinMM

XBTL
ZeroAccess
ZhmMmikatz

9002 RAT
Alice ATM
Alreay

Arik Keylogger
Ayegent

Bart
BlackShades
Bundestrojaner
Carbanak
ChChes
CloudDuke
CoinMiner
CradleCore
CryptoFortress
CryptoShield
Cutwail
DarkShell
DeriaLock
DMA Locker
DownRage
Duuzer

Erebus
FakeRean
FinFisher
Formbook
GhostAdmin
GooPic

HINT Loader
Hhawkeye Keylogger
HiZor RAT
httpbrowser
Infy

isspace
Jimmy
KasperAgent
KillDisk
KrBanker
Lazarus
LockyDecryptor
Magala
Matsnu
Miuref
MoleRAT Loader
Mutabaha
NetRepser Keylogger
Newcore RAT
Oddjob
PadCrypt
PlugX
PowerDuke
Qadars
Ramnit

Razy
RemsecStrider
Rokku

Rurktar
SathurBot
ShadowPad
Shylock

Slave

Spora
SuppoBox
SysGet
TeslaCrypt
TinyLoader
TrickBot
UACme
unknown_006
unknown_029
Unlock92
Virut
WINSloader
Xpan

ZeroT
ZLoader

AbbathBanker
Alina POS
AMTsol
Asprox
AzorUlt

Batel

Bolek

Bunitu
Carberp
Chinad
CMSbrute
ComodoSec
Crashoverride
Crypto Ransomeware
Cryptowall
CyberSplitter
DarkTrack RAT
Derusbi
Dorkbot
Dreambot
Dyre

Etumbot
FakeTC
Fireball
Furtim

Ghost RAT
Gozi

Hamweq
Helminth
Hiddentear
Hworm

ISFB

jaff

Joao

Kazuar

KINS
KrDownloader
Laziok
LokiBot
Maktub
Mewsei

MM Core
Moonwind
Nabucur
NetSupportManager RAT
NexsterBot
Odinaff
PandaBanker
Poisonlvy
PowerSniff
QakBot
Ranbyus

RCS

Retefe
RokRAT

Sage
Screenlocker
Shakti

Sierras
SmokelLoader
SpyBot

Swift
SysScan
Thanatos
TinyNuke
Trochilus RAT
Uiwix
unknown_008
unknown_030
Upatre
VMZeus
WndTest
XsPlus

Zeus

Acronym
AlmaLocker
Andromeda
Athenago
Babar

Bedep
Bravonc
Buzus
Cardinal RAT
Chir
CobaltStrike
Conficker
CredRaptor
Cryptolocker
CryptoWire
CyberGate
Daserf

Devils RAT
Dorshel
Dridex

EDA2 Ransomware
EvilBunny
Fanny
FireCrypt
GameoverDGA
Glasses
GPCode
Hancitor
Heloag
HighTide

IAP
ISMagent
jager_decryptor
JgjSnicker
Kegotip
KokoKrypt
Kronos
Limitail
LuminosityRAT
ManameCrypt
Miancha
MobiRAT
Morphine
Nagini
NetTraveler
NexusLogger
Opachki
Petrwrap
PolyglotRansom
Prikormka
QuantLoader
Ranscam
RedAlert
Revenge RAT
Rombertik
Sakula RAT
Sedreco
ShapeShift
Siggen6
Snifula
sslmm
SyncCrypt
Teerac
Threebyte
TinyTyphon
Troldesh
unknown_001
unknown_013
unknown_031
Urausy
Vreikstadi
Woolger
Xswkit

Zeus Mailsniffer

AdamLocker
Alphabet Ransomware
Apocalypse Ransomware
ATMitch
BadEncript
BetaBot
Bredolab
c0d0so0
Casper
Chthonic
Cobian RAT
Contopee
Crylocker
CryptoLuck
Cryptxxxx
CycBot
DEloader
DiamondFox
DoublePulsar
Dropshot
EhDevel
EvilGrab

Fast POS
FlokiBot
GameoverP2P
Globe Ransomware
GrabBot
HappyLocker
Herbst

HiKit

Ice IX
ISMdoor

jaku

JripBot
Kelihos

Konni
Kuaibu8
Listrix

Lurk
Manifestus Ransomware
Micropsia
Mocton
Moure
Naikon
Netwire

Nitol

OpGhoul
Petya

Pony
Pteranodon
Quasar RAT
Ransoc
RedLeaves
Rincux
Romeos
Sality
SedUploader
Shifu

Simda

SNS Locker
Stabuniq
SynFlooder
TeleBot
ThumbThief
TinyZBot
Trump Ransomware
unknown_002
unknown_020
unknown_032
UrlZone
Wannacry
XAgent
XTunnel
ZeusSphinx

Adylkuzz
AlphaLocker
Ardamax
AugustStealer
BadNews
BlackEnergy
BTCWare
Cabart
CCleaner Backdoor
Citadel
Cockblocker
CoreBot
CrypMic
CryptoMix
CsExt
DarkComet
Deltas

Dimnie
DownDelph
DualToy

Elise
EvilLoader
Feodo
Flusihoc
Geodo
Globelmposter
Graftor
Harnig
Herpes

HLUX

Idkey

iSpy Keylogger
jasus

KAgent
Keylogger (APT3)
KoobFace
Lambert
LockPOS
Luzo
MatrixBanker
Mimikatz
Moker
MultigrainPOS
Nanocore
Neutrino
njRAT

Orcus RAT
Pittytiger RAT
PopcornTime
Pushdo
Radamant
RapidStealer
Remcos
RockLoader
Roseam
Samsam
SendSafe
ShimRAT
Sinowal
Socks5Systemz
StegoLoader
SynthLoader
Tempedreve
Tidepool
Tofsee

Tsifiri
unknown_003
unknown_023
unknown_033
Vawtrak
Waterspout
XbotPOS
Yahoyah
ZeusSSL

Table 6: Windows malware families (446) covered in the evaluation presented in Section 5.

Daniel Plohmann, Martin ClauB, Steffen Enders, Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape 19

	Introduction
	Goals and Requirements for a Malware Corpus focusing on Static Analysis
	Goals
	Adoption of Prudent Practices
	Definition of Requirements
	Representative Content
	Cross-Platform Orientation
	Unpacked Samples
	Accurate Labels and Meta Data
	Documentation of Data Generation
	Curation and Dissemination

	The Malpedia Corpus
	Terminology
	Collection Approach
	Dump Creation and Family Identification
	Storage and Organization
	Data Set Status

	The Malpedia Platform
	Implementation of Trust Mechanisms
	Ensure High Standards for Contribution Quality
	Automation Support
	Baseline Data Set
	Contextual Enrichment: Meta Data

	A Comparative Structural Analysis of Windows Malware
	PE Header Analysis
	PE Header Availability
	General Characteristics
	Timestamp Information
	Compiler/Linker Information
	Data Directories

	Code Analysis
	Cursory Control Flow Graph Analysis
	Program Database Information (PDB)

	Windows API Usage Analysis
	ApiScout: API Information Recovery from Memory Dumps
	API Information Availability
	DLL and API Usage Frequencies

	Related Work
	Conclusion

