
 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 2, NO. 1, DEC. 2016, BOTCONF 2016 PROCEEDINGS

Angel M. Villegas, Function Identification and Recovery Signature Tool 1

Function Identification and

Recovery Signature Tool

Angel M. Villegas
1Malware Research Team, 2Cisco - Talos

This paper was presented at Botconf 2016, Lyon, 30 November – 2 December 2016, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr

 It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

Abstract

Reverse Engineering benign or
malicious samples can take a
considerable amount of time and new
samples are created at an alarming rate.
Leveraging disassemblers, like IDA Pro, a
reverse engineer can analyze the same
routines across several samples over the
lifetime of their career. Their knowledge is
not easily transferred to similar samples
or functions for themselves or others.

In particular we can consider the
problem code reuse has on reversing
efforts, whether it is via statically-linked
libraries or integrating existing software.
In this paper we want to provide a
solution for transferring knowledge to
similar functions by introducing a new
reverse engineering tool, named FIRST
(Function Identification and Recovery
Signature Tool), to reduce analysis time
and enable information sharing.

Keywords: FIRST, reverse engineering,
disassembly analysis, code reuse

1 Introduction

To understand the capabilities of malware, discover
vulnerabilities in software, or to make software
interoperable engineers leverage reverse
engineering and the tools of the trade.

Currently a reverse engineer will open a
sample in an analysis tool/framework to look more
in-depth at the sample. For instance, let’s say we
have an unknown Microsoft portable executable
(PE) believed to be malicious. To learn more about
the different code execution paths we would open
the sample in IDA Pro. IDA will display the
disassembly and we can start looking through the
functions. IDA, via FLIRT signatures, will label some
know library functions thereby reducing the number
of functions to be analyzed. However, many
samples contain tens/hundreds/thousands of
functions not labelled by IDA. After analyzing that
sample an analyst will understand what those
functions do and have added helpful annotations to
IDA (function name, prototype, argument names,
and function comments). Once the analysis is
complete the engineer will move on to another
sample and another and another… Eventually
functionality seen or previous analyzed will be seen
again, either due to the generic nature of the
disassembly, code reuse (copy/pasting) or
evolution of the same malware family.

Whether it is time, money or intelligence;
resources are wasted in this process. In this paper
we will discuss FIRST, a cross tool/platform
analysis framework to prevent wasting the
resources in the future.

2 Problem and a solution

The main idea behind FIRST is to preserve an
engineer’s analysis of a function (name, prototype,

https://journal.cecyf.fr/

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 2, NO. 1, DEC. 2016, BOTCONF 2016 PROCEEDINGS

2 Angel M. Villegas, Function Identification and Recovery Signature Tool

comment) and reduce analysis time by restoring
function analysis. A function’s analysis can be used
to provide helpful information for future reversing
efforts. In addition, many research areas dive into
ways to find similar functions that are not one to
one mappings of functions. By using methods like
opcode hashing, mnemonic hashing, locality
sensitive hashing, etc., we can find variations from
the function originally analyzed.

Starting from this observation, FIRST has
four main goals. First, we want to obtain an
analyst’s function annotations. However, just
storing annotations will not aid us in accomplishing
our other goals, thus we will need to gather
additional data unique to the function such as
opcodes and used APIs. Second, we want to store
and recover annotations saved. Third, we want to
use the stored information to generate ways to find
similar functions in which the metadata can be
applied. The goal is to provide quick lookups for
similar functions. Finally, we want to receive
opcodes for a function, use methods for detecting
the same or similar functions, and to return a list
metadata that can be applied to the function.

Practical application would involve
integrating into a reverse engineer’s workflow,
FIRST would need to accomplish four important
goals: 1) obtaining function metadata and
implementation details, 2) exposing an API for
performing various operations (adding or updating
functions), 3) applying various algorithms to
normalize or transform the function’s

implementation for matching, and 4) provide
extensible framework to allow new algorithms for
detecting similar functions. From an architectural
point of view FIRST consists of three components:

• An application programming interface (API)
or application binary interface (ABI) for
developers to integrate FIRST into
preexisting products or workflows.

• Integrations into analysis workflows. For
example incorporate FIRST into the
industry standard disassembler using an
API to create a plugin.

• A server framework that can provide the
interfaces and integrations with a REST API
along with a plugin scheme to include new
modules.

3 Implementation

To achieve the three components previously
describe we need to create a client-server
framework, see Figure 1. The server framework
provides a REST API, an authentication model,
database manager and engine manager. A
database manager provides flexibility to integrate
new data sources. The engine manager organizes
and executes all modules used to derive function
similarity, called an Engine. An engine can utilize
any of the available data sources.

The client side provides end users with a
method for registering and obtaining the
integrations they elect to use. Once registered an

Figure 1: FIRST framework overview

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 2, NO. 1, DEC. 2016, BOTCONF 2016 PROCEEDINGS

Angel M. Villegas, Function Identification and Recovery Signature Tool 3

end user receives an API key and can start using
the API/ABI or integration. Each integration may
bring different capabilities due to the nature and
available features of the tool or analysis framework
used. The basic functionality that should be
exposed is for an end user to:

• Add function annotations (function name,
prototype, comment)

• Check for function annotations
• Update function annotations applied
• Manage annotations created

3.1 Server framework
The framework incorporates a web service for
registration and interacting APIs. Once registered,
the user will receive a unique API key that is
required by the interfaces and integrations. The
API/ABI interacts with the server via an exposed
REST API. Any data sent to the server will enter the
modular framework. The framework includes
several components: a web REST API (responsible
for providing a RESTful API, validating input, and
returning results to the client); an authentication
module (validate logins via the web user); a
database (DB) manager (responsible for providing a
layer of abstraction for engines to interact with
various databases without implementing specific
functionality in the engine themselves); an Engine
manager (responsible for interacting with the
various installed engines and DBs to add new
function metadata or retrieve it).

The framework supplies an abstract DB class

for developers to create their own DB modules that
can be incorporated with the engines. The default
installation of FIRST includes a DB module for
getting data from the database FIRST uses to store
all of its information. Developers do not need to use
FIRST’s database but can leverage completely
different databases for storing data. This allows
FIRST to be integrated into pre-existing workflows
without engineering a completely new system.

The framework supplies an abstract Engine
class for developers to create their own engines to
expand and enrich FIRST's capabilities. The Engine
Manager (see Figure 2) will dynamically load
installed engines. Once installed, the engine will
receive incoming function metadata and add to the
engine's system for storing relevant information
(whether it leverages a DB or another means of

storage). Engines are given very specific input and
expect specific output for the Engine Manager to
handle requests from the client.

The abstract Engine Class defines what
methods and class variables are required by the
Engine Manager and includes many wrapper
functions to ensure correct data is returned to the
Engine Manager. The Engine Manager will initialize
all installed engines by passing them the DB
manager. If the DB manager contains the database
connections required by the engine then the engine
is operational and added to the list of engines the
framework will use for processing requests from
the client. However, if the engine does not have the
required connections or dependencies, then the
engine will be excluded from the framework's list of
engines.

An Engine is a developer creation and treated
as a black box by the Engine Manger. Each engine
is required to implement two required methods (Add
and Scan as labeled in the diagram) and can
implement two optional methods (install and
uninstall). Add and Scan methods are given
predefined input and outputs standardized data.
Engines are given function opcodes and perform
some algorithm to create meaningful data for
comparing with other function opcodes. However,
engines do not have to generate data, for example
an engine could look for certain fixed cryptographic
constants and return metadata based on those
values.

3.2 Client integrations
The APIs and ABIs provide developers with a way to
incorporate FIRST into their current workflow.
However, many research engineers will leverage
industry standard tools. To meet our goal of
integrating into a reverse engineers’ workflow we
are targeting industry standard tools, i.e. Hex Rays’
IDA Pro. We will focus on FIRST integration into IDA
Pro to show an example integration.

3.2.1 IDA Pro Plugin Requirements
Hex Rays actively develops IDA Pro and continues
to build out its plugin APIs and environment. Due to
this and the patches in various UI changes FIRST
requires IDA Pro 6.9 or higher. FIRST is an IDA
Python plugin and requires Python module
requests. For easier installation, install Python 2.7
from python.org. In that case you can install

Figure 2: Engine manager

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 2, NO. 1, DEC. 2016, BOTCONF 2016 PROCEEDINGS

4 Angel M. Villegas, Function Identification and Recovery Signature Tool

FIRST’s requirements with pip install

requests. If you use the Python installed with
IDA’s installer you will receive Python 2.7.6 where
as the current version is Python 2.7.12.

Additionally, users must register with a FIRST
server to get an API key.

3.2.2 Integration – IDA Pro
Since IDA provides a rich analytical environment the
IDA Python plugin provide the following capabilities

• Add annotations (single or multiple
functions)

• Check for annotations (single or all
functions)

• Update applied annotations
• View applied annotations
• View annotation history
• Manage metadata
• Script FIRST with IDA Python

Figure 3: IDA Pro integration

Moreover it is also possible to insert tables
inside csdfdsfsdfsdfsd

4 Related work

There have been several attempts to create
collaborative frameworks for IDA Pro and match
similar functions. IDA Sync [1], collabREate [2],
BinCrowd [3], IDA Toolbag [4], SolIDArity [5] are just
a few examples of collaborative frameworks build
for reverse engineers in IDA Pro. Several of these
projects focus on several analysts reversing the
same sample or set of samples together. For this
reason they focus on trying to keep everyone’s view
in IDA similar to each other and reflect user
contributions to various levels. Unfortunately, some
frameworks are based on the sample and the
project (a collection of samples). The same
function appearing in another sample will not
match previous analytical efforts.

CrowdRE [6], FCatalog [7] and Kam1n0 [8]
Unfortunately, all projects (with the exception

of Kam1n0 and FCatalog; SolIDArity has not been
released yet) have not been maintained, no longer
available, or are only compatible with older versions
of IDA Pro and no other analysis framework

5 Future work

Currently a Python API exists for interacting
with the server and we are expanding this to a full

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 2, NO. 1, DEC. 2016, BOTCONF 2016 PROCEEDINGS

Angel M. Villegas, Function Identification and Recovery Signature Tool 5

ABI with a Radare2 integration in development. All
code pertaining to the project is available on
GitHub1.

Acknowledgment: The author would like to thank
the following people for their help Alain Zidouemba,
Doug Goddard... This research was funded with the
support of Talos’ Malware Research Team (Cisco
Systems, Inc.).

Author details

Angel M. Villegas

Talos – Cisco Systems, Inc.
8135 Maple Lawn Blvd. Suite 100
Fulton, MD 20759
anvilleg@cisco.com

References

[1] P. Amini, "IDA Sync," https://github.com/nihilus/ida-
sync-plugin

[2] C. Eagle, "CollabREate," The IDA Pro Book, chapter 23,
http://www.idabook.com/collabreate/.

[3] S. Porst, "ShaREing is Caring - Announcing the free
BinCrowd community server," Zynamics Blog,
https://blog.zynamics.com/2010/03/25/shareing-is-
caring-announcing-the-free-bincrowd-community-
server/

[4] B. Edwards and A Portnoy, "Toolbag" Recon 2012,
https://recon.cx/2012/schedule/events/250.en.html

[5] M. Gaasedelen and N. Burnett, "Sol[IDA]rity,"
https://solidarity.re

[6] A. Meyers, "CrowdRE: Alpha++ Release," CrowdStrike
Blog, https://www.crowdstrike.com/blog/crowdre-
alpha-release/

[7] Xorpd, "FCatalog,"
http://www.xorpd.net/pages/fcatalog.html

[8] S. H. H. Ding, B. C. M. Fung, and P. Charland,
"Kam1n0: MapReduce-based Assembly Clone
Search for Reverse Engineering," In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD '16), p.
461-470.

1 http://github.com/vrtadmin/FIRST

mailto:anvilleg@cisco.com

