
 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

A. Chailytko and A. Trafimchuk, DGA Clustering and Analysis [Short conference paper] (numbering of pages to be confirmed)

DGA Clustering and Analysis: Mastering Modern,

Evolving Threats
DGALab

Alexander Chailytko

Malware Reverse Engineering Team

Check Point Software Technologies

Minsk, Belarus

alexanderc@checkpoint.com

Aliaksandr Trafimchuk

Malware Reverse Engineering Team

Check Point Software Technologies

Minsk, Belarus

aliaksandrt@checkpoint.com

Abstract — Domain Generation Algorithms (DGA) is a basic

building block used in almost all modern malware. Malware

researchers have attempted to tackle the DGA problem with

various tools and techniques, with varying degrees of success. We

present a complex solution to populate DGA feed using reversed

DGAs, third-party feeds, and a smart DGA extraction and

clustering based on emulation of a large number of samples.

Smart DGA extraction requires no reverse engineering and

works regardless of the DGA type or initialization vector, while

enabling a cluster-based analysis. Our method also automatically

allows analysis of the whole malware family, specific campaign,

etc. We present our system and demonstrate its abilities on more

than 20 malware families. This includes showing connections

between different campaigns, as well as comparing results. Most

importantly, we discuss how to utilize the outcome of the analysis

to create smarter protections against similar malware.

Keywords—malware; DGA; clustering; automation; reverse

engineering, threat intelligence

I. INTRODUCTION

Malware that uses Domain Generation Algorithm (DGA)
has become more prevalent these days. DGA [1] is an
algorithm whose main function is to periodically generate a
large number of domain names that can be used by the
malware to communicate with a malicious C&C server.

This introduces a lot of new challenges to malware
researchers and the antivirus industry as a whole. It is
becoming increasingly difficult to seize the operation of
malware families using DGAs; sinkholing in its current form is
not effective because there are too many domains that need to
be blocked every day, and only a small number of them will be
contacted by the malware. The sinkholing process cannot be
automated. It also often involves contacting domain name
registrars, so they can proceed with taking legal actions against
malicious domains, which is only feasible for large security
companies.

We need more data to effectively counter innovations like
DGA. That’s why we initiated our DGALab project, in which
we produce an exhaustive DGA feed that includes the most
popular DGA families seen in the wild.

II. MODULAR SYSTEM & CLUSTERING PROBLEM

DGALab is a highly modular system. We now discuss each
module in more detail.

A. Cuckoo core & VMWare Workstation

Cuckoo [2] is a malware analysis system that can be
customized to achieve almost any goal in automating malware
research. We use Cuckoo as a foundation to run and control our
virtual machines.

We made several modifications in Cuckoo, mostly to
increase our successful emulation rate and to prevent detection
of Cuckoo and the virtualized environment. CuckooMon, which
is the DLL injected into the target processes, was cleaned up
and rewritten.

Also, we have decided to use VMWare Workstation instead
of the more frequently used VirtualBox for the sake of
reliability.

B. DGALab modules (data sources)

There are many DGA implementations in the wild. Most of
them, however, can be grouped into 3 major families:

1) Static DGA – a DGA whose generated output is not

dependent on date or seed. Most likely this kind of DGA will

generate the same domains every time (example: Expiro).

2) Date-based DGA – this type of DGA generates domains

based on date (example: Conficker).

3) Seed-based DGA – this type of DGA utilizes hardcoded

seed and\or date to generate domain names. The seed is

usually a very large number which cannot be predicted. The

seed may also be changed for different targets or campaigns.

This paper was presented at Botconf 2015, Paris, 2-4 December 2015, www.botconf.eu

It is published in the Journal on Cybercrime \& Digital Investigations by CECyF, https://journal.cecyf.fr/ojs

c b It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.

DOI: 10.18464/cybin.v1i1.10

http://www.botconf.eu/
https://journal.cecyf.fr/ojs

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

A. Chailytko and A. Trafimchuk, DGA Clustering and Analysis [Short conference paper] (numbering of pages to be confirmed)

Reimplementing the DGA algorithm is not sufficient to deal

with that type of DGA; one needs to reverse engineer every

new sample for each campaign, to extract the relevant seed or

to emulate every such sample (example: Tinba).
We designed DGALab to be able to handle successfully

each of these families and developed a separate module for
each specific family.

A DGALab module is a Python script. There are 4 types of
modules that DGALab supports:

1. Static DGA module
This is the simplest type of module. As stated previously, a

static DGA generates constant domain names which do not
depend on date or seed. We reverse engineer this malware only
once and write the module. It will then generate domains
automatically for our output feed.

2. Date-based DGA module
As stated previously, the output of a date-based DGA is

based on date and/or time. Malware that uses this type of DGA
usually has a limited number of variants (usually between 1
and 5). We perform initial reverse engineering of each variant
and implement the algorithm in Python. The scheduler then
runs this module every N hours (usually N=24). Finally, we get
the output DGA feed for every day. We can also pregenerate
domains, for example, for 30 days in advance and save them
for future use.

3. Emulation DGA module
This is the most complex DGA and, consequently, the most

interesting module type. As stated previously, emulation DGA
utilizes the hardcoded seed and\or date to generate domains.
The major problem is that the seed is usually represented as an
integer (4 bytes), which means there are 4,294,967,295
possible variants of the DGA. We cannot predict which of
these values will be hardcoded by the malware author into the
samples that will appear in the wild. Bruteforcing and storing
the results of domain generation for all 4,294,967,295 possible
seed variants is definitely not feasible, especially when the
malware, for example, outputs 5,000 domains for each variant
for each day, resulting in a total of 21,474,836,470,000
domains per day.

We approached this differently. We prepared an
environment that consists of our own DNS server on the host
machine that accepts all DNS requests issued by the malware,
and a bunch of specifically crafted virtual machines which are
used for emulation and are controlled using modified version of
Cuckoo.

Virtual machines are adopted for generating the entire list
of domains that malware can produce. To achieve this, we
implemented fixes for the following components of the
Windows system:

1) NetBIOS name resolving

2) Microsoft Windows Sockets library

3) Different network related DLLs

4) ZwDelayExecution API

These fixes also allowed us to generate 4,000 domains in
just 3 seconds, while usual generation would take
approximately 3 hours (Tinba).

We then harvest all the samples (see III. Harvesting
Samples for a detailed explanation) from the family that we are
interested in, based on various detection parameters. These
samples are placed in a queue.

The process of emulation runs in parallel. Each virtual
machine takes one sample from the queue at a time. As soon as
the emulation is finished, the VM moves on to the next sample
in the queue.

When we run a malware sample, the result is a list of
domains that are being generated. After performing some
filtering, we take the first domain in that list and use it as a
name for a category inside that family by appending a letter at
the end. For example:

spaines.pw_A

If we encounter another sample that has generated the same
first domain, but has other domains that are different, this
means that it uses a different seed, but has the same
“initialization vector.” We create another category for this
sample, appending another letter. For example:

spaines.pw_B

Another possible scenario is if we encounter a sample that
generated the same domains that we saw previously in another
category. The hash of that sample will be labeled with an
existing category.

After we run a number of samples, we end up with a list of
categories that we can sort by prevalence, last seen date, and
other parameters.

For example, let’s look at the Tinba malware family. At the
moment of writing this paper, DGALab processed more than
67,000 samples. We’ve found 115 distinctive categories, for
which we have generated domain lists. We believe we fully
cover the Tinba family and its derivatives.

Below is the graph with the most prevalent categories of the
Tinba malware family.

 THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

A. Chailytko and A. Trafimchuk, DGA Clustering and Analysis [Short conference paper] (numbering of pages to be confirmed)

4. Feed providers DGA module
Modules of this type parse publically available data

sources, such as CriticalStack Intel Feed [3]. Each module
parses a single data source. The results are then aggregated,
post-processed, filtered and added to the final output.

C. Scheduler

The scheduler is a complex module that is responsible for
performing various tasks. That’s how the scheduler works:

 For date-based DGAs: Generates the cache of domains for
at least 30 days in advance. After each day has passed, it
will then generate the data for an additional day, so it
operates as a “sliding window.”

 For DGAs that require emulation: Gets new samples

from available data sources, (skipping already processed

files) and adds them to the execution queue in the

virtualized environment.

 For DGA feed providers: Executes modules for each

domain feed.

Finally, scheduler gathers all the results of each module
type with the required meta information and composes a
database that can be exported.

D. Aggregator

The aggregator is a module that takes domains from each of
the 4 DGALab data sources and adds some meta information
such as the date when a specific domain category was initially
discovered, last seen date, prevalence of the domain category,
number of domains in each category, etc.

III. HARVESTING SAMPLES

To effectively operate our DGALab, we need a large
number of malware samples. We tried different sources, but
ended up with VirusTotal (VT) as our main source.

We start by gathering all possible names and aliases for the
families in which we are interested. This step is performed
manually and only once, when we add a new family to the
DGALab. Then, we make a request to VT for each alias of that
family, so it will return the list of malware hashes. We perform
post-processing (parsing of the reports) and compile them to
one list. This list contains all hashes for a malware family,
which has at least one or more detections with the same name
according to VT. This step filters out a lot of samples and helps
to make sure that the sample actually belongs to our family of
interest.

Finally, we download all samples in the list and add them to
the emulation queue.

IV. VM DETECTIONS PROBLEM

The most significant problem with emulating malware is
that it might detect the emulation environment and stop
running. We therefore try to be as noninvasive as possible.

From the beginning, we noted that VirtualBox, which is
used in conjunction with Cuckoo, does not meet our
requirements. After some testing, we decided to use VMWare
Workstation instead.

First, we removed almost all the usermode hooks in the
CuckooMon DLL. Basically, we don’t really need them, as we
gather all the required information from our own DNS server.

We then wrote a kernel mode driver that hides all virtual
machine artifacts. This includes devices, files, registry keys,
etc.

Finally, we adjusted the processor features and cleared the
hypervisor flag in the processor, so the malware cannot detect
the fact that it is running under the hypervisor (using CPUID
assembler command).

All of these steps raised our successful detection rate by
approximately 45%. We successfully generated domains even
for the samples that failed to execute on VirusTotal.

V. USING OUR FEED

There are problems with sinkholing the large number of
domains that modern malware can generate. For example,
consider a malware that generates 20,000 domains per day but
uses only 10 of them randomly. Sinkholing all of the domains
is very ineffective, since 19,990 domains will be removed from
legitimate registration for no reason. It’s also quite a lengthy
process to sinkhole a large number of domains, and it cannot be
easily automated.

Therefore, the common approach is to inspect the traffic,
track the domain names that are being accessed, identify
malware and block its communications with C&C.

We have built an automated process that connects the
DGALab with our Threat Intelligence knowledge base, so that
every domain that is produced in our DGALab is automatically
fed into our cloud infrastructure. It’s then propagated to all
security devices that deploy our technology in customers’
networks.

When a DNS request is issued by a client, the security
device checks if the domain name is marked as malicious. If it
is malicious, the connection will be dropped and an alert is
raised. This effectively stops data leaks from inside the
network, as actual C&C communication does not occur.

ACKNOWLEDGMENTS

We would like to thank a member of our team, Stanislav
Skuratovich, for helping us out with this project.

REFERENCES

[1] https://en.wikipedia.org/wiki/Domain_generation_algorithm

[2] http://www.cuckoosandbox.org/about.html

[3] https://intel.criticalstack.com/

https://en.wikipedia.org/wiki/Domain_generation_algorithm
http://www.cuckoosandbox.org/about.html
https://intel.criticalstack.com/

