
THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

Malware Instrumentation
Application to Regin Analysis

Matthieu Kaczmarek
Email: tecamac@gmail.com

This paper was presented at Botconf 2015, Paris, 2-4 December 2015, www.botconf.eu
It is published in the Journal on Cybercrime & Digital Investigations by CECyF, https://journal.cecyf.fr/ojs
cb It is shared under the CC BY license http://creativecommons.org/licenses/by/4.0/.
DOI: 10.18464/cybin.v1i1.2

Abstract—The complexity of the Regin malware underlines the
importance of reverse engineering in modern incident response.
The present study shows that such complexity can be overcome:
substantial information about adversary tactics, techniques and
procedures is obtained from reverse engineering.

An introduction to the Regin development framework is
provided along with instrumentation guidelines. Such instru-
mentation enables experimentation with malware modules. So
analysis can derectly leverage malware’s own code without the
need to program an analysis toolkit.

As an application of the presented instrumentation, the under-
lying botnet architecture is analyzed. Finally conclusions from
different perspectives are provided: defense, attack and counter
intelligence.

I. INTRODUCTION

This study presents malware analysis techniques which
leverage instrumentation to overcome static analysis limita-
tions. Those techniques are applied to the Regin malware
which is a good example of complex malware that does not
exhibit its full potential via simple sandbox executions.

Regin is built on a Service Oriented Architecture (SOA)
where modules are plugged according to the operation pur-
pose. Such modules are generally not self-activated, they
require a specific context and commands to exhibit their
behavior. Facing such malware, analyst usually fallback on
static analysis and toolkit development to decode and decrypt
adversary data saved with the malware.

The need for manual analysis of the malware modules is
illustrated by [1], [2] where each known Regin module is
thoroughly analyzed to enumerate the malicious capabilities.
The present study propose to go beyond such analysis calling
modules routines via reuse of the malware orchestrator. Such
technique enable experiment and rapid triage of modules as
underlined in [3]. Similarly [1], [2] describe the Virtual File
System (VFS) format to enable access to malware data. [2]
even provides code excerpts of a toolkit to re-implement such
access. We rather propose to directly use Regin VFS module to
access such data. The latter approach decreases development
time while providing full compatibility.

The main drawback of the present approach is the need of a
deep understanding of Regin internals. Indeed [1] and [2] only
scratch the surface of Regin development framework focusing
on modules. The instrumentation the orchestrator require a

deep understanding of the Remote Procedure Call protocol
which lies in the internals of the malware. On the other
hand, this additional reverse engineer enable to go beyond
usual studies providing an understanding of the Regin botnet
network structure.

The study is divided into 4 sections. Section II pictures the
design of the Regin malware. The understanding of the sound
development standards used to create this malware is the entry
point to reus the internal malware logic. Section III presents
technical details about code instrumentation describing the key
malware structures and routines that can be reused for the
subsequent analysis. Section IV applies the techniques of the
preceeding sections to the malware networking. This section
shows how much high level information can be extracted
from the technical analysis. Finally, Section V summarizes
findings from three perspectives: defense, attack and counter-
intelligence.

II. DESIGN

The first challenge in reverse engineering Regin malware
is its Service Oriented Architecture (SOA). Such an archi-
tecture is composed of modules which talk with one another
via Remote Procedure Calls (RPC). Modules communicates
either locally inside a single instance or remotely over the
global botnet. This architecture enable work distribution over
instances making it easier to operate a large network of probes
collecting information.

A. Overview

A strong design is implemented to ensure stealthiness, confi-
dentiality, availability, scalability and reliability. The resulting
botnet can be safely and securely operated over a large network
with only average skills and low human interaction.

Stealthiness: It is difficult to quickly identify core Re-
gin code as malware. Indeed, it rather looks like good qual-
ity software developed with strong design and strict cod-
ing guidelines. Furthermore implementation details underline
stealthiness efforts, for example a configurable delay between
cryptography rounds is implemented to avoid CPU spikes.
Such a delay also dramatically decrease performance, this fact
shows that stealthiness is an important requirement.

Confidentiality: Cryptography is a cornerstone of the
implementation. All data are stored encrypted and network
communications leverage asymmetric cryptography for au-
thentication and confidentiality. Indeed the RPC protocol
enable end-to-end encryption with routing so that traffic

Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis 1

tecamac@gmail.com

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

interception on relays does not disclose the content of the
traffic. Furthermore, digital signing restricts communication
to authenticated Regin node.

Availability: Key network components are always re-
dundantly implemented. Examples include master nodes,
127.0.0.2 and 127.0.0.3, and central reporting nodes, 127.0.0.4
and 127.0.0.5. Network transport is also redundantly imple-
mented supposedly to palliate incompatibility.

Scalability: The network protocol and the associated
network structure are designed to support a large number of
instances. For example master nodes can be locally mapped
so that sub-networks obey to different masters balancing load.
Furthermore, the internal networking works over a Virtual Pri-
vate Network (VPN) overlay providing a 32bit virtual address
to each nodes with routing and network address translation
capabilities. This is a typical functionality in large network
management that are rarely observed in malware but for large
botnet infrastructures.

Reliability: Strong design efforts are put in making
Regin immune to operator errors. On one hand, extensive
automation is implemented with customization according to
the hosting environment. On the other hand double checks are
required for key components. For example, it is very unlikely
that an operator would generate unwanted network traffic to a
command and control disclosing botnet assets. To enable com-
munications between two nodes at least three elements need to
be configured: a virtual IP, a public key and transport channel.
Operators likely use predefined standard configuration which
certainly go through quality/security assessment. Operations
can be entrusted to differently skilled personnel in a tiered
service supporting a scalable model.

B. Architecture

A Regin module is a self-contained unit identified by a
16bit integer, a WORD. Each module implements specific
functionalities, such as cryptography; Module 000f1, or com-
pression; Module 000d. Modules can combine several routines
to provide more complex services. For example, Module 0007
implements an encrypted and compressed virtual file systems
combining Modules 000f and 000d2.

The malware embeds a minimal set of required core mod-
ules listed in Figure 1. Additional modules can be plug
into live a instance according to the infection purpose. Such
additional modules are usually stored inside the virtual file
system supported by Modules 0007 and 003d.

An infection can also feature kernel components. The kernel
side implements a second SOA independent from the user-land
side. As a standalone system, it also implements a set of core
modules listed in Figure 1. Note that modules with similar
functionality have identifiers increased by 63 with respect to
their user land counterpart.

Kernel and user lands communicate via Module c3bf which
implements shared memory and a notification mechanism

1By convention mudule and handler identfier are implicitely written under
hexadecimal form.

2This is illustrated in Section III-B Figure 5

ID Functionality
0001 RPC Dispatcher
0007 Virtual File System
0009 Networking
000b Logging
000d Compression
000f Cryptography
0011 RPC Dump
0013 Neighborhood
0019 UDP Transport
0033 Inactivity Triggers
003d Virtual File System
c373 TCP Transport

ID Functionality
0065 Orchestrator
006b Virtual File System
0071 Compression
0073 Cryptography
00a1 Virtual File System
c3bf Bridge Kernel and User
c427 Host Parameters
c42f Process Watch
c431 Hook Engine

Fig. 1. Core Modules

hooking on ZwDuplicateObject. In a nutshell handlers3 01
and 03 respectively writes and reads the shared memory trans-
ferring RPC between user and kernel lands. This mechanism
might be subject to change in the different flavors of Regin but
the bridge module ID shall remain the same: c3bf. This is
a benefits of the SOA architecture; as long as the interface
between modules is preserved, the underlying implementation
can be changed without dramatic compatibility issue.

There might exist other flavors of the SOA. According to
the author knowledge, standard nodes always features modules
with odd number identifiers. However, modules with even
numbers are referenced in the code such as Module 000a
which seems to be a central reporting module.

mov rcx , [rsp+38h+rpc]
mov r8d, 0Ah ; ; Module ID
mov rax, [rcx+RPC.module]
mov r9b, 5 ; ; Handler ID
mov rdx, [rax+MODULE.regin]
mov rax, [rdx+REGIN.helper]
mov edx, 7F000002h

; ; Master node 127.0.0.2
call [rax+HELPER.queueASync]

; ; (void rpc , DWORD node, WORD ModID, BYTE HdlID)

Similarly some code stubs feature module identifier trans-
lation such as the next one where the identifier 001a is
translated into the identifier 003d adding the constant 23. Such
compilation patterns are common where macro are defined in
the source code to adapt constant according to compilation
flags. Typically, this pattern suggest that this code fragment
might be compiled either with Module 003d or Module 001a
according to compilation flags.

mov rcx , [rsp+78h+rpc] ;; rpc
lea edi , [rbx+23h] ; ; rbx = 1Ah
mov r9b, 3 ; ; Handler ID
mov r8d, edi ; ; Module ID
mov edx, 7F000001h ; ; Local node
call queueRPC

A last observation supporting the hypothesis of the existence
of several Regin flavor is the access control list provided
by Module 0009 Handler 1f. Figure 2 provides an example,
it grants access to unsigned foreign RPC4 according to the
source module identifier, the destination handler identifier and
the destination module identifier. Typically Module 0009 is

3A handler is a routine of a module. This is further explained in Sec-
tion III-A

4Further details about digital signing and access control are provided in
Sections IV-D

2 Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

allowed to query Module 0009 Handlers 11-15, 24 to initiate
encrypted communications via a session key exchange. But
modules with even number identifiers seem to be granted
greater access.

The previous observations suggest that master nodes are
compiled with different module identifiers. So that the master
nodes are granted privileged control over regular nodes.

C. Remote Procedure Call

Modules features routines indexed by 8bit integers. Ser-
vice are delivered querying those routine through a specific
sequence of event.

Marshaling: The client initialize a data structure and
write the RPC input. The code below is an example of
marshaling observed in Regin code. An RPC structure is
initialized and a BYTE is marshaled into the input buffer.

; ; Create a rpc
lea rdx, [rsp+48h+rpc]
mov r9 , [rax+REGIN.helper]
call [r9+HELPER.rpcNew]
test al , al
jz loc 180018624 ;; jmp if error

; ; Marshalling
mov rcx , [rsp+48h+rpc]
mov rax, [rcx+RPC.module]
mov rdx, [rax+MODULE.regin]
mov rax, [rdx+REGIN.helper]
mov dl , bpl ; ; BYTE to write
call [rax+HELPER.in.writeByte]
test al , al
jz short loc 180018606 ;; jmp if error

Queuing: The client send the RPC structure to the local
dispatcher, that is Module 0001, with parameters specifying
the destination address module and routine. This messaging
can either be synchronous or asynchronous. Synchroneous
calls wait for the RPC to be fully processed before continuing
the execution. Asynchroneous calls leave in separate threads
and the caller continues its execution without waiting for the
RPC completion.

This corresponds to the following code pattern which where
the previously initialized RPC is queued to Module 0007 Han-
dler 03. This is the virtual file system management module,
Handler 03 reads a file system record which ID is provided
as argument: the byte that has been marshaled into the RPC
structure.

; ; Queueing
mov rcx , [rsp+48h+rpc] ;; rpc
lea r8d, [rbx−1] ; ; module ID rbx = 8
mov r9b, 3 ; ; handler ID
mov rax, [rcx+RPC.module]
mov rdx, [rax+MODULE.regin]
mov rax, [rdx+REGIN.helper]
mov edx, r12d ; ; Virtual IP
call [rax+HELPER.rpcQueue]

Orchestration: If the destination is local, 127.0.0.1, then
the dispatcher simply applies the specified routine to the RPC
data structure. If the destination is remote, the RPC structure is
transferred to the networking manager, Module 0009, for rout-
ing to the destination node. Networking is further addressed
in Section IV.

Unmarchaling: The destination module routine reads the
input from the RPC structure. For example, the following
unmarchaling code reads a byte from the input buffer.

mov rax, [rcx+RPC.module]
lea rdx, [rsp+78h+id]
mov rcx , [rax+MODULE.regin]
mov rax, [rcx+REGIN.helper]
mov rcx , rdi
call [rax+HELPER.in.readByte]

Processing: The output are processed and output are
marshaled back into a dedicated buffer in the RPC structure.
Finally the RPC returns back to the client following the same
steps in the reverse direction. The code below achieves the
indented processing: read and decrypt a virtual file system
record. Then the output is marshaled in the output buffer of
the RPC structure.

; ; Processing: read the VFS
mov rcx , cs : vfs ; ; vfs structure
lea r9 , [rsp+78h+rcd size]; ; size
lea r8 , [rsp+78h+rcd] ; ; dst
lea rdx, [rsp+78h+rcd id] ;; ID
call VFSGetRecord
mov ebx, eax
test eax, eax
jnz loc 18004C76A

; ; Processing: decrypt the data
mov r8d, dword ptr [rsp+78h+record size] ; ; size
mov rdx, [rsp+78h+record data] ; ; src
mov rcx , cs :VFSModule ;; module
lea rax, [rsp+78h+size]
lea r9 , VFSCryptoKey

; ; key: 73231F4393E19F2F990C17815CFFB401
mov [rsp+78h+psize], rax
lea rax, [rsp+78h+written] ; ; dst written size
mov [rsp+78h+buffer], rax ; ; dst
mov [rsp+78h+key size], 10h ;; key size
call CryptoDecryptBuffer
mov ebx, eax
test eax, eax
jnz short loc 18004C75C

; ; Marshalling of the returned value
mov rax, [rdi+RPC.module]
mov r8d, [rsp+78h+size]
mov rdx, [rsp+78h+data]
mov rcx , [rax+MODULE.regin]
mov rax, [rcx+REGIN.helper]
mov rcx , rdi
call [rax+HELPER.out.append]

III. INSTRUMENTATION

The previous sections showed that Regin code is strongly
structured and designed. Furthermore this malware is very
large and features numerous functionalities. The usual re-
sponse for such malware consists in developing a toolkit to
decrypt and decode data storage in order to understand the role
of the infected machines. This usually results in substantial
development work.

We propose an alternative technique base on the sound
structure of this malware. Instead of developing a toolkit
to interpret Regin data, this section presents how to reuse
Regin code. This approach uses instrumentation loading the
core module and leveraging the RPC interface to decode data.

A. RPC Helper

The cornerstone of the instrumentation technique is the
RPC helper structure that has been exhibited in the previous

Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis 3

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

#Src, Hdl, Dst,
0000, 21, 0001,
0000, 23, 0001,
0000, 26, 0001,
0000, 2f, 0001,
0000, 3f, 0001,
0000, 30, 0001,
0000, 32, 0001,
0000, 35, 0001,
0000, 3b, 0001,
0000, 43, 0001,
0000, 44, 0001,
0000, 46, 0001,
0000, 48, 0001,
0000, 4a, 0001,

0004, 32, 0001,
0004, 32, 0033,
0004, 32, 0009,
000e, a0, 000f,
000e, a1, 000f,
000e, a2, 000f,
000e, a3, 000f,
000e, e9, 000f,
000a, 04, 000b,
000a, 05, 000b,
000a, 11, 000b,
000a, 28, 000b,
000a, e9, 000b,
0032, 81, 0033,
0032, e9, 0033,

0012, 04, 0013,
0012, 05, 0013,
0012, 06, 0013,
0012, 08, 0013,
0012, 0b, 0013,
0012, e9, 0013,
0010, 10, 0011,
0010, 12, 0011,
0010, 13, 0011,
0010, 21, 0011,
0010, 30, 0011,
c372, 04, c373,
0009, 11, 0009,
0009, 12, 0009,
0009, 13, 0009,

0009, 14, 0009,
0009, 15, 0009,
0009, 24, 0009,
0008, 25, 0009,
0008, 26, 0009,
0008, 90, 0009,
0008, 60, 0009,
0008, 61, 0009,
0008, 62, 0009,
0008, 63, 0009,
0008, 64, 0009,
0008, 65, 0009,
0008, 66, 0009,
0008, 67, 0009,
0008, 68, 0009,

0008, 69, 0009,
0008, 6a, 0009,
0008, 6b, 0009,
0008, 6c, 0009,
0008, 6e, 0009,
0008, 6f, 0009,
0008, 71, 0009,
0008, 72, 0009,
0008, 73, 0009,
0008, 74, 0009,
0008, 75, 0009,
0008, 76, 0009,
0008, 77, 0009,
0008, 78, 0009,
0008, 1c, 0009,

0008, 1d, 0009,
0008, 1e, 0009,
0008, 79, 0009,
0008, 80, 0009,
0008, 7a, 0009,
0008, 7b, 0009,
0008, 81, 0009,
0008, 82, 0009,
0008, 83, 0009,
0008, 84, 0009,
0008, 85, 0009,
0008, e9, 0009,
c41e, e9, 0009,

Fig. 2. Module Access Control List

section. Figure 3 presents the methods that are used to manage
the RPC processing steps. The RPC helper is an entrypoint
into Regin instrumentation. The following examples presents
how to leverage this helper to interact with Regin nodes.
The following code registers a module with ID 7eca where
regin instance is the instance of the local node.

/* Get the helper BASE is the base address */
RPC HELPER* HELPER = (RPC HELPER*)(BASE + 0x669F0);

/* Create a module */
void* module7eca;
HELPER−>modNew(&module7eca, 0x7eca, regin instance)

In order to make module handlers accessible to the other
modules managed by the local dispatcher, each handler need
to be registered. For example the following code define the
handler writeMsg and register it with the ID 23. The handler
of Module 7eca can now be queried by all other local modules
or by any remote nodes connected to this node via RPC.

/* Add a module handler */
HELPER−>modAddHdl(module7eca, 0x23, writeMsg);

Module handlers typically process data. The RPC model
supports input and output via dedicated buffers where typed
data can be marshaled. Figure 3 lists the supported data
types: BYTE, WORD, DWORD, string, wide character strings
and raw buffer. The previously referenced handler routine
writeMsg is detailed below. It takes a raw buffer from the
RPC input and print it.

/* Handler payload */
NTSTATUS
writeMsg(void* rpc){

BYTE* msg = NULL;
/* UnMarshalling */
HELPER−>in.readSizeStringBE(rpc, &msg, NULL);
/* Processing */
wprintf (L’’\n >%s\n>’’, msg);
return STATUS SUCCESS;
}

Calling this handler would result in the printing of the
message provided as argument. The following code present
how to call this handler sending the string “Hello world” as
input where 0b is the string length, 7eca is the destination
module ID and 23 the destination handler ID.

/* Marshalling */
HELPER−>in.writepSizeStringBE(rpc, Hello World , 0xb);
/* Queuing */
status = HELPER−>queueRPC(rpc, 0x7f000001, 0x7eca, 0x23);

struct DATA HELPER{
BYTE(*writepSizeString)(void *rpc , void *src , size t size , BYTE endianess);
BYTE(*writepSizeStringBE)(void *rpc, void *src , size t size) ;
BYTE(*append)(void *rpc, void *src, size t size) ;
BYTE(*writeString)(void *rpc , char *s) ;
BYTE(*writeWString)(void *rpc, wchar t *s);
BYTE(*writeByte)(void *rpc, BYTE b);
[...] // Similar writers for WORD, DWORD, QWORD and Date structure

BYTE(*SeekEoBuffer)(void *rpc, size t *outSize) ;
QWORD field;
BYTE(*readByte)(void *rpc, BYTE* b);
[...] // Similar readers for WORD, DWORD, QWORD and Date structure

BYTE(*readSizeString)(void *rpc, BYTE **buff, DWORD *pSize, int endianess
);

BYTE(*readSizeStringBE)(void *rpc, BYTE **buff, DWORD *pSize);
BYTE(*readString)(void *rpc, char **pBuff, size t size) ;
BYTE(*readWString)(void *rpc, wchar t **pBuff);
BYTE(*unReadByte)(void* rpc);
BYTE(*readSize)(void *rpc, void**p);
};

struct RPC HELPER{
[...] // object internals

NTSTATUS(*modNew)(void** mod, DWORD id, void* regin);
NTSTATUS(*modFree)(void* rpc);
NTSTATUS(*modAckIP)(void* rpc);
NTSTATUS(*modAddHdl)(void* mod, WORD hdlID, void* payload1);
NTSTATUS(*modApplyHdl)(void *mod, void *header, void *in, void *out);
NTSTATUS(*rpcNew)(void *mod, void **rpc);
NTSTATUS(*createAlternateRPC)(void *mod, void **rpc);
NTSTATUS(*rpcFree)(void* rpc);
NTSTATUS(*altRPCFree)(void* queue);
[...] // rpc setters and getters

NTSTATUS(*rpcQueue)(void* rpc, DWORD IP, WORD modID, BYTE hdlID);
NTSTATUS(*rpcASyncQueue)(void *rpc, DWORD IP, WORD modID, BYTE

hdlID);
[...] // rpc queueing variants

DATA HELPER in;
DATA HELPER out;
[...] // setters and getters
};

Fig. 3. RPC Helper

The second argument, 7f000001, is the address of the
reception node. This is the virtual IP address in Regin virtual
network: 7f000001 corresponds to the local loop IP address
127.0.0.0.1 representing the local node. RPC can be sent to
remote nodes specifying destination virtual IP addresses. For
example, the following code sends an RPC to the remote
Regin node with virtual IP address 1.2.3.4.

/* Queue an RPC */
DWORD dstIP = \x01020304;
HELPER−>in.writeSizeStringBE(rpc, ”Hello World”, 12);

4 Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

; Trace RPC queuing
bp disp+0x12ba7 ”.echo −− RPC QUEUED −−; .echo Dst IP:;dd (rbx + 0x14)

L1; .echo Dst Module:; dw (rbx + 0x18) L1; .echo Dst Handler:; db (rbx +
0x1a) L1; .echo Input:; dd poi(rbx + 0x48); g”

; Trace RPC return
bp disp+0x12bab ”.echo −− RPC RETURNS −−; .echo Dst IP:;dd (rbx + 0x14)

L1; .echo Dst Module:; dw (rbx + 0x18) L1; .echo Dst Handler:; db (rbx +
0x1a) L1; .echo Output:; dd poi(rbx + 0x68);g”

; Trace asynchronous RPC queuing
bp disp+0x12c6e ”.echo −− RPC ASYNC QUEUED −−:; .echo Dst IP:;dd (rbx

+ 0x14) L1; .echo Dst Module:; dw (rbx + 0x18) L1; .echo Dst Handler:;
db (rbx + 0x1a) L1; .echo Input:; dd poi(rbx + 0x48);g”

; Trace asynchronous RPC return
bp disp+0x12c71 ”.echo −− RPC ASYNC RETURNS −−:; .echo Dst IP:;dd (

rbx + 0x14) L1; .echo Dst Module:; dw (rbx + 0x18) L1; .echo Dst Handler
:; db (rbx + 0x1a) L1; .echo Output:; dd poi(rbx + 0x68);g”

Fig. 4. Windbg Breakpoints for RPC Tracing

status = HELPER−>queueRPC(rpc, dstIP, 0x7eca, 0xe0);

The source virtual IP address can be extracted from the
processed RPC. For examplet, the handler writeMsg routine
can be enhanced to print the source address and the received
message.

/* Handler payload */
NTSTATUS
writeMsg(void* rpc){

/* Retrieve RPC context */
BYTE node[4];
HELPER−>getNodeAndModuleID(rpc, (DWORD*)&node, NULL);
/* Unmarshalling */
BYTE* msg = NULL;
HELPER−>in.readSizeStringBE(rpc, &msg, NULL);
/* Processing */
wprintf (L’’\n%i.%i.%i.%i>%s\n>’’, node[3], node[2], node[1], node[0], msg);
return STATUS SUCCESS;
}

This section underlines the flexibility of the Regin pro-
gramming framework where a chat program can be coded
with a few lines registering a single handler. Networking and
routing mechanisms are builtin the Regin framework so that
Peer to Peer (P2P) networking can be easily programmed. The
following section provide further details about this networking
framework.

B. RPC Execution Trace

Such an architecture makes difficult to trace the execution.
Since control is transferred via queues of RPC, the understand-
ing of the data flow is necessary to study the control flow.
Static reverse engineering is complex and debugging can be
tricky because of the inherent multithreading. To overcome this
difficulty, it is interesting to trace the queuing of RPC. This can
be achieved via the windbg breakpoints presented in Figure 4.
Those are inserted at the beginning and the ending of the
routines rpcQueue and rpcASyncQueue from the helper
structure. The breakpoints prints the destination node virtual
IP, the destination module ID and the destination handler ID
and the marshaled input of the queued RPC. At the end of the
RPC processing the output is respectively printed.

For example, Figure 5 show the RPC trace resulting from
the addition of a known host public key. This result in a
sequence of three RPC. A call to Module 0007 Handler 02
launches the writing of the public key to the VFS container.

This writing is proceeded by the compression, Module 000d
Handler 01, and the encryption, Module 000f Handler 01, of
the newly added public key.

IV. NETWORKING

A. Design

Regin is designed as a peer-to-peer network software, nodes
can function either as clients or as servers to another infected
host. However some slight evidences suggest that there is other
Regin flavor that may act as super nodes internally referenced
by local loop aliases: 127.0.0.2 and 127.0.0.3 are believed to
reference master nodes, furthermore, 127.0.0.4 and 127.0.0.5
are believed to reference monitoring nodes.

The Regin network implements a virtual overlay on top
of the physical network of infected host. Regin nodes are
assigned virtual IP addresses stored in Container 01 of Mod-
ule 0009. This overlay build a VPN over the infected physical
network. Modules 0009 and 0013 manage communication
inside the virtual network while relying on transport module
such as 0019 (UDP) and c373 (TCP) to exchange data over
the underlying physical network.

The structure of the virtual network is stored in Container 03
of Module 0009. This configuration, define a list of records
assocting virtual IP of remote nodes to a transport modules.
Two records can associate a single IP address to several
transport modules for resilience purpose. There is no imposed
structure upon the virtual network. This makes Regin botnet
easy to build with the ability to define several pivots points that
are sometime necessary to exploit segmented victim networks.

There is a second overlay on top of the virtual network
defined by trusted links. Similarly to a ssh server, each
Regin node features a list of trusted hosts associated to public
keys, Module 000f container 01. Signed RPC messages from
trusted nodes are directly executed. In this model some nodes
only acts as proxy: they receive messages which are routed to
another node inside the virtual network.

Figure 6 presents the topology of a Regin infection. The
solid arrows represent the virtual network overlay and dashed
arrows represent the trust overlay. The network is organized
into clusters where some nodes concentrate the traffic with
multiple incoming network connections such as XX15f814
and XX15f90b. There are also relays, such as XX15bd99,
which interconnect clusters. This is a typical topology of a
data collection network with probes distributed over a victim
network.

B. Transport

The routing of RPC over the botnet is managed by Mod-
ule 0009 with the help of Module 0013. Connection channels
are implemented by dedicated modules such as Module 0019
responsible for UDP channels and Module c373 responsible
for TCP channels. Channels module need to implement a
common interface for managing incoming and outgoing con-
nections. As long as such an interface is provided, any kind of
transport channel can be supported by Regin such as ICMP,
steganography, HTTP cookies...

Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis 5

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

-- RPC QUEUED --
Dst IP:
00000000‘00187fe4 7f000001;; Local node
Dst Module:
00000000‘00187fe8 000f ;; Module Crypto
Dst Handler:
00000000‘00187fea 53 ;; Add a known host
Input:
00000000‘0208e310 32000007 00000088 01000000 01000000
00000000‘0208e320 552570fb 50659c12 de78301f 0ead5594
-- RPC QUEUED --
Dst IP:
00000000‘0018808c 7f000001;; Local node
Dst Module:
00000000‘00188090 0007 ;; Module VFS
Dst Handler:
00000000‘00188092 02 ;; Write VFS Container
Input: ;; Data to write
00000000‘02088060 0001c001 00000700 00008832 00000000
00000000‘02088070 00000001 2570fb01 659c1255 78301f50
-- RPC QUEUED --
Dst IP:
00000000‘00187e94 7f000001;; Local node
Dst Module:
00000000‘00187e98 000d ;; Module Compression
Dst Handler:
00000000‘00187e9a 01 ;; Deflate
Input: ;; Data to deflate
00000000‘02051490 32000007 00000088 01000000 01000000
00000000‘020514a0 552570fb 50659c12 de78301f 0ead5594
-- RPC RETURNS --
Dst IP:
00000000‘00187e94 7f000001;; Local node
Dst Module:
00000000‘00187e98 000d ;; Module Compression
Dst Handler:
00000000‘00187e9a 01 ;; Deflate
Output: ;; Deflated data

00000000‘0204f730 000007fc bb008832 fbbf0701 12552570
00000000‘0204f740 5065ff9c de78301f adff5594 8028c10e
-- RPC QUEUED --
Dst IP:
00000000‘00187e94 7f000001;; Local node
Dst Module:
00000000‘00187e98 000f ;; Module Crypto
Dst Handler:
00000000‘00187e9a 01 ;; Symetric encryption (RC5)
Input: ;; Data to encrypt
00000000‘02051490 00000010 431f2373 2f9fe193 81170c99
00000000‘020514a0 01b4ff5c 00000149 45e96f43 c0010000
-- RPC RETURNS --
Dst IP:
00000000‘00187e94 7f000001;; Local node
Dst Module:
00000000‘00187e98 000f ;; Module Crypto
Dst Handler:
00000000‘00187e9a 01 ;; Symetric encryption
Output: ;; Encrypted data
00000000‘03890390 0601199b 6984694a cb1a09cb 5c8efc9e
00000000‘038903a0 91fd1d2f 1919c50c f771a307 1168bd6b
-- RPC RETURNS --
Dst IP:
00000000‘0018808c 7f000001;; Local node
Dst Module:
00000000‘00188090 0007 ;; Module VFS
Dst Handler:
00000000‘00188092 02 ;; Write to container
Output: ;; No output
-- RPC RETURNS --
Dst IP:
00000000‘00187fe4 7f000001;; Local node
Dst Module:
00000000‘00187fe8 000f ;; Module Crypto
Dst Handler:
00000000‘00187fea 53 ;; Add a known host
Output: ;; No output

Fig. 5. RPC Trace of a Know Host Registration

Transport channels must feature two phases: initiation and
data. Those phases can be supported by distinct transport
modules, for example initiation can be achieve over UDP port
53 and transport over TCP port 443. Only the initiation channel
needs to be specified on the reception node, the data channel
is dynamically defined in the initiation message. Incoming
connections are managed by Module 0009 Handler 06. This
handler take three parameters as input: a BYTE specifying
the action 0 to add a channel, 1 to remove a channel, a
WORD specifying the transport module managing the incom-
ing connection and a raw buffer which provides connection
details such as the listening network port. For example the
following code set an incoming UDP channel on port 53 via
Module 0019.

/* Configure listening connection on UDP 53 */
/* Marshalling mode 0, Module 0019 (UDP), port 53 */
HELPER−>in.writeByte(rpc, 0);
HELPER−>in.writeWord(rpc, 0x19);
size t len = wcslen(data) / 2;
HELPER−>in.writeSizeStringBE(rpc, 53 , 3) ;
/* Queue the RPC to start listening connections */
status = HELPER−>queueRPC(rpc, DST IP, 9, 6);

Outgoing connections can be defined on the emitting node
via Module 0009 Handler 04. This handler takes more param-
eters to configure the connection as presented in the following
example.

/* Configure outgoing connection on UDP 53 */

// mode 0: new connection with default parameters
// mode 1: delete connection
// ...
// mode 7: new connection with custom parameters
HELPER−>in.writeByte(rpc, 1);
// Virtual IP address on the \regin virtual network
HELPER−>in.writeDWord(rpc, 0x00000002);
// Id of the connection
HELPER−>in.writeByte(rpc, 1);
// Initiation connection string 192.168.226.235 port 53
HELPER−>in.writepSizeStringBE(rpc,
\x00\x00192.168.226.235\x00\x35\x00\x01\x02\x01\x01\x01\x01,26);

// Data connection string 192.168.226.235 port 443
HELPER−>in.writepSizeStringBE(rpc,
\x00\x00192.168.226.235\x01\xBB\x00\x01\x02\x01\x01\x01\x01,26);

// delay between initiation retries
HELPER−>in.writeByte(rpc, 0x96);
// module for initiation channel 0x0019: UDP
HELPER−>in.writeWord(rpc, 0x19); // initiation chan module
// module for data channel 0xc373: TCP
HELPER−>in.writeWord(rpc, 0xc373); // data chan module
// connection mode
NTSTATUS status = HELPER−>queueRPC(rpc, DST IP, 0x9, 0x4);

After this preliminary configuration, RPC can be remotely
sent to the node virtual IP 0.0.0.2 residing on the physical host
192.168.226.235 and listening on UDP port 53.

C. Protocol

The present section describes the network protocol on top
of the transport protocol. Communications are established by
an initialization message. This message defines the data com-
munication channel specified by a module and its parameters
for data transport. The initialization message is watermarked

6 Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

Fig. 6. Virtual Network and Trust Overlays

Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis 7

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

with the letters “s h i t” respectively located at index 8, 11,
1a and 23. Optionally the initialization message can be RC5
encrypted.

Below we dissect communications between Regin nodes.
The first one has 0.0.0.1 as virtual IP and 192.168.226.171 as
physical IP. It is configured to communicate via Module c373
(TCP) on port 80 for initialization and port 443 for data. The
virtual IP of the destination node is 0.0.0.2 and its physical IP
is 192.168.226.235.

The recipient node listens on TCP port 80. The commu-
nication starts with an initialization message instructing the
recipient node to open a listening thread on TCP port 443 via
Module c373. The initialization message typically looks like
the packet of Figure 7.

Data is base64 encoded, on decoding we observe marshaled
data with an endianess flag, followed by the message size
and encrypted data watermarked with the string “s h i t” as
presented in the hexadecimal dump in Figure 8

After the watermark removal, the data can be decrypted with
the following hardcoded key:
71 9b b5 05 c8 69 9b 9f f8 6a 38 92 1f de 02 7e

The decrypted message presented in Figure 9 is salted with
a random 2-byte word, watermarked with the 16bit integer
7a69 (31337d) and controlled by a CRC32 check-sum. Then
follows the connection string that is served to Module 0009
to launch the listening thread. The author does not have a full
understanding of all parameters but it features timeout (like
2800) and number of retries (02). The main parameters are
the recipient IP address 192.168.226.235 and the port 443.

The receiving node parses the message and starts a thread
for data according to the channel defined in the initiation mes-
sage. Subsequent data communications are similarly encrypted
with recipient public keys. If the digital signature is verified
against a known trusted public key, then the RPC is queued
for processing. On completion the result is sent over the same
data channel. The data would typically looks like the dump of
Figure 10.

Decryption with the same hardcoded RC5 key yield the data
presented in Figure 11 with a routing header and encrypted
payload.

The routing header is in clear text so that messages can be
relayed over the botnet while enabling end to end encryption.
Figure 12 presents the configuration of a relay. The node
XX30bf15 has only a very few known host, in particular it
does not know the public key of XX9e0112. This nodes act
as a bridge between the networks of Victim A and C. As
such it only needs the public key of the node from which
it was installed, XX020119. So intercepting this node does
not compromise the communication between Victim A and C
because only routing header are processed by this node.

D. Digital Signature

Regin botnet configurations are secured via asymmetric
cryptography. Indeed one cannot connect to a Regin node
without proper authentication. A Regin node accept an RPC

from a remote node only if this RPC is signed with a known
asymmetric key. Authentication and asymmetric cryptography
are managed by Module 000f. The following example presents
how to list public keys of authorized nodes.

/* List known hosts */
HELPER−>in.writeDWord(rpc, 1);
NTSTATUS status = HELPER−>queueRPC(rpc, DST IP, 0xf, 0x60);

However there is a whitelist access control that enable
to bypass the signature validation process. The whitelist is
composed of entries specifying a source module, a destination
handler and a destination module. A raw version of this
whitelist is presented in Figure 2. Figure 13 lists the routines
that can be called by a foreign module without signature.

We observe that those functionalities are related to monitor-
ing or debugging. This support the hypothesis of the existence
of other Regin flavor with greater control over standard nodes.
This whitelist can be obtained via Handler 1f of Module 0009.

/* Get the whitelist */
HELPER−>queueRPC(rpc, DST IP, 0x9, 0x1f);

V. CONCLUSIONS

Regin is developed with built-in access control and authen-
tication. This can be compared to ssh clients, where security
lies in the keys of the users and not in the implementation
details. Uncovering the Regin framework does not directly
impact the adversary security. Indeed the security of the
Regin infrastructure is tied to node secret keys. On the other
hand, victims should be in possession of private keys enabling
connection to the Regin network. This aspect might be an
explanation for a recurrently observed TTP in Regin supported
attacks: numerous victims nodes are quickly disinfected by the
adversary when the attack is discovered.

Regin is built on a convenient SOA framework aiming
at rapid development of remote services. This suggest that
Regin operations might be supported by tiered services where
a team or a contractor is responsible for providing this frame-
work. Thus several entities may have contracted “Regin kits”
from the same provider, making final attribution difficult.
Furthermore, such a framework is likely to be delivered as
source code or intermediate language. As a result compilation
timestamps might be an indicator about the operator rather
that the development contractor.

A. Defense Perspective

Regin dose not supports the first steps of an infection, it
is a post-exploitation kit likely installed via an initial implant.
So Regin infection cannot be efficiently prevented and defense
strategy should rather focus on detection and hunting.

On IOCs: The subject malware cannot be easily detected
via the usual IOC strategy. For example Section IV-C shows
that botnet is organized with pivots where a third victim can
bridge two first victims. In this context IOC like IP addresses
or domain names are specific to each infection making IOC
sharing less efficient. Similarly, [2], [1] underlined the staging
mechanism implemented to load the main Regin components.

8 Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

;; Ethernet II, Scr: Vmware_27:40:9e, Dst: Vmware_2f:e5:34
;; Internet Protocol V4, Src: 192.168.226.171, Dst: 192.168.226.235
;; Transmission Control Protocol, Src Port: 49209, Dst Port: http (80),
;; Seq: 1, Ack: 1, Len: 127
0000 00 50 56 2f e5 34 00 50 56 27 40 9e 08 00 45 00 .PV/.4.PV’@...E.
0010 00 a7 0c 9a 40 00 80 06 a6 ce c0 a8 e2 ab c0 a8@...........
0020 e2 eb c0 39 00 50 52 24 4c 48 61 b8 15 8b 50 18 ...9.PR.LHa...P.
0030 40 29 cc e9 00 00 @)....

;; Data
0036 41 56 38 41 41 41 42 4f 79 4c AV8AAABOyL
0040 35 7a 61 4b 62 6a 4e 4d 48 69 42 51 68 6f 61 76 5zaKbjNMHiBQhoav
[...]
00a0 43 78 76 5a 51 72 33 4f 59 73 6c 5f 64 36 70 43 CxvZQr3OYsl_d6pC
00b0 75 57 63 46 59 uWcFY

Fig. 7. Initialization Message Encapsulation

0000 01 .
;; Length
0001 5f 00 00 00 _...

;; Encrypted Data with "shit" watermark
0005 4e c8 be 73 68 a6 e3 34 c1 e2 05 N..sh..4...

ˆˆ s
0010 08 68 6a f2 cc ac ff 78 24 23 69 0b e3 fc 39 5d .hj....x.#i...9]

ˆˆ ˆˆ h i
0020 60 b0 f4 74 6d 46 e7 f0 fc ed c3 20 16 d7 e7 80 ‘..tmF.....

ˆˆ t
0030 fa 42 6e aa 67 f6 62 1c 76 47 8c 73 16 31 07 27 .Bn.g.b.vG.s.1.’
0040 fe 11 a9 fc ca d6 82 c6 50 48 c2 c5 ae 0e 8c 30PH.....0
0050 b1 bd 94 2b dc e6 2c 97 f7 7a a4 2b 96 70 56 ...+..,..z.+.pV

Fig. 8. Initialization Message Watermark

;; Random word
0000 5b e0 [.

;; Watermark 31337 in decimal
0002 7a 69 zi

;; CRC32 checksum
0004 38 61 f4 42 8a.B

;; Connection parameters (delay, timeout...)
0008 08 02 00 00 00 01 00 00
0010 00 01 00 00 28 00 00 46 00 00 00 2c 01 00 00 28(..F...,...(
0020 96 .

;; Transport Module c373 (TCP)
0021 73 c3 s.

;; Connection string parameters
0023 01 24 00 00 00 00 00

;; Destination 192.168.226.235 on port 443 (0x1bb)
002a 31 39 32 2e 31 36 .s........192.16
0030 38 2e 32 32 36 2e 32 33 35 00 01 bb 8.226.235...

;; Connection string parameters
003c 00 00 00 00
0040 01 00 00 00 02 01 00 00 00 01 01 01 00 00

Fig. 9. Decrypted Initialization Message

;; Ethernet II, Scr: Vmware_27:40:9e, Dst: Vmware_2f:e5:34
;; Internet Protocol V4, Src: 192.168.226.171, Dst: 192.168.226.235
;; Transmission Control Protocol, Src Port: 49210, Dst Port: https (443),
;; Seq: 1, Ack: 1, Len: 397
0000 00 50 56 2f e5 34 00 50 56 27 40 9e 08 00 45 00 .PV/.4.PV’@...E.
0010 01 b5 0c a3 40 00 80 06 a5 b7 c0 a8 e2 ab c0 a8@...........
0020 e2 eb c0 3a 01 bb 56 d5 be a1 cf cf 8a e1 50 18 ...:..V.......P.
0030 40 29 4d a3 00 00 @)M...

;; Encrypted
0036 72 90 fc 0d 72 90 fd 84 73 b9 r...r...s.
[...]
01b0 65 33 18 a7 ae f6 35 f7 32 08 d0 a2 b4 81 7e e3 e3....5.2.....˜.
01c0 6e 92 7e n.˜

Fig. 10. Data Message

Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis 9

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

;; Destination virtual IP (0.0.0.2), destination module (0009), destination
;; handler (11)
0000 02 00 00 00 09 00 11

;; Source handler (13), source IP (0.0.0.1) and source module (0009)
0007 13 01 00 00 00 09 00
[...]

;; Timestamp Fri Nov 28 06:05:56.044 2014
0020 a2 75 80 5f d1 0a d0 01 .u._....
[...]

;; Checksum
0038 b2 79 65 fd .ye.

;; Signing virtual IP (0.0.0.1)
003c 01 00 00 00
[...]

;; Message length (0x119) signature version (0x1) and signature length (0x113)
0050 19 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 01 00 13 01 00 00

;; Encrypted data
0066 91 e0 16 77 d6 7b 60 af f4 27 ...w.{‘..’
[...]
0170 65 c2 cf 98 ec c3 33 ff cb e.....3..

Fig. 11. Decrypted Data Message

Fig. 12. Pivot Between Victims

Module ID Whitelisted routines
0000 Manage running modules: start, stop, list
0004 List modules, neighbors or connections
000e Edit crytographic parameters
000a Clean logs
0032 Configure inactivity triggers
0012 Neighborhood management
0010 RPC dump management
c372 Open TCP listener
0009 Authenticate, handshake
0008 Manage timeout, manage queued RPC
c41e Unknown

Fig. 13. RPC Whitelist

The first two stages are disposable and may regularly change
so that IOC on filenames and registry are quickly obsolete.

Detection strategy should rather focus on design structures.
Indeed, Regin has a strong design with specific protocol and
data formats. Such a detection strategy is more sustainable than
IOCs because changes in protocol or data structures would
likely cause backward compatibility issue on the adversary
side.

Structural Detection: An example of such a detection
strategy is presented in [4] where the proposed heuristics target

the VFS file structure. However, the detection domain should
be extended from files to memory and to lower storage level
such as inter-partition spaces on disks.

Another structural detection can target network protocol.
As presented in Section IV-C the watermark “s h i t” in
the initialization message is a low hanging fruit for network
detection, [5] propose such an IDS rule. However, this water-
mark is not used on the data channel and it can be removed
from the initialization packet without much impact on the the
communication protocol.

On the other hand, Section IV-C underlined that the protocol
implement clear text routing header enabling end-to-end en-
cryption. A change in this header would impose to upgrade all
routing Regin nodes which may be difficult to manage for the
adversary. This routing header is encrypted with a hardcoded
key, so an IDS targeting this structure should implement RC5
decryption over the first bytes of the packet. This is feasible
even on high traffic but dedicated computational power may
be necessary.

Hunting: Figure 6 shows that infections may be very
large. Such network maps are valuable to track all infected
nodes. This network diagram is obtained compiling the net-
work connections in Container 01 of Module 0009 and the
public key list in Container 01 of Module 000f.

Backtracking the network structure with timeline correlation
would provide interesting information about how the botnet
was deployed so that potential entry points and implant
are identified and removed too. Indeed, Regin is a post-
exploitation malware installed from an initial implant, so
containment must target such implants too.

B. Attacker Perspective

Backdoor: Regin is a very mature malware however it
features several weaknesses. First the digital signature verifi-
cation bypass presented in Section IV-D looks like a backdoor
for master nodes. The security of this bypass relies on the
module identifier which is a very weak control. Indeed even
if standard nodes are distributed with odd number identifier

10 Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

only, module identifiers can be impersonated providing wider
control to a counter-attacker. It is understandable that wider
control is necessary for specific nodes. This should rather be
implemented via specific public key distribution similarly to
the master nodes public keys. Ideally role base access control
should be considered on top of the authentication mechanism.

Watermark: The watermark “s h i t” in the initialization
message is superfluous and it is a low hanging fruit for IDS
detection. It is superfluous because a second verification is
achieved on the header after RC5 decryption.

C. Counter-Intelligence Perspective

Observation: The first step toward the understanding of
a Regin infection is to identify the scale of the infection.
Section V-A presented how to build a network map of the
botnet. Additionally, network flow can be identified activating
logging mechanisms built-in the malware. Logs are controlled
by Module 000b and Module 0009 handlers aa-ac, b4-bd.
RPC dump are controlled by Module 0011. Logs and dump
are stored in specific configurable VFS. Such an observation
mechanism has the benefits of stealthiness as the adversary
own tool are leveraged in the process.

Adversary Intent: In order to anticipate new infections
it is important to identify the mobile of the adversary so
that the related assets are specifically monitored. For this
purpose all the containers in the virtual file system need to be
extracted and analyzed. For example, Microsoft Exchange e-
mail collection filters are stored compressed in Container 02 of
Module d9d6. The following code allows to access the content
of this container.

/* Create the RPC structure */
HELPER−>createStream(module0001−>instance, &stream);

/* Specify the VFS ID: 1 here */
HELPER−>in.writeByte(stream, 1);

/* Specify container ID ModuleID and ContaineID:
respectively d6d9 and 02*/

HELPER−>in.writeSizeStringBE(stream, ”\xd6\xd9\x02”,3);

/* Read from VFS */
HELPER−>queueStream(stream, DST IP, 7, 0xc);

/* Retrieve compressed output */
BYTE* buff;
size t size = 0;
HELPER−>getOut(stream, (void**)&buff, &size);

/* Inflate , the end is sigaled by the status code */
DWORD sizeout = 0x100;
do{

HELPER−>seekBuffer1(stream, 0);
HELPER−>in.writeDWord(stream, sizeout);
HELPER−>in.writepSizeStringBE(stream, buff, size);
status = HELPER−>queueStream(stream, DST IP, 0xd, 0x6);
sizeout *= 2;
}while (status == 0x1011 && sizeout != 0);

Those filters includes mail addresses and keywords. Mail
addresses can be directly used to get insight on the infection
objectives. Filters also includes a blacklist of keywords used
to filter out mails. Such information are valuable in a counter-
intelligence strategy. Figure 14 presents some blacklisted key-
words, the purpose is obviously SPAM filtering. Such filtering
is a double edged sword as explained in [6].

ACKNOWLEDGMENT

I’d like to thank Alexandre, Andrzej, Bruce, Christophe,
Damien, Michal, Sergiusz and Yann for their awesome work
on that malware.

REFERENCES

[1] Symantec Security Response, “Regin: Top-tier espionage tool en-
ables stealthy surveillance,” https://www.symantec.com/content/en/us/
enterprise/media/security response/whitepapers/regin-analysis.pdf, 2014.

[2] Kaspersky Lab Report, “The regin platform nation-state ownage
of gsm networks,” https://securelist.com/files/2014/11/Kaspersky Lab
whitepaper Regin platform eng.pdf, 2014.

[3] Ömer Coskun, “Why nation-state malwares target
telco networks,” https://www.slideshare.net/merCokun1/
defcon23-why-nationstatemalwaretargettelcoomercoskun-51440112,
2015.

[4] Paul Rascagnères and Eddy Willems, “Regin, an old but sophisticated
cyber espionage toolkit platform,” https://blog.gdatasoftware.com/blog/
article/regin-an-old-but-sophisticated-cyber-espionage-toolkit-platform.
html, 2014.

[5] EmergingThreats, “Regin rules (requries apr module) and flash detec-
tion updates,” https://github.com/EmergingThreats/et-luajit-scripts/blob/
master/luajit.rules.

[6] Paul Ducklin, “Do terrorists use spam to shroud their
secrets?” https://nakedsecurity.sophos.com/2015/01/19/
do-terrorists-use-spam-to-shroud-their-secrets, 2014.

Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis 11

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/regin-analysis.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/regin-analysis.pdf
https://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf
https://securelist.com/files/2014/11/Kaspersky_Lab_whitepaper_Regin_platform_eng.pdf
https://www.slideshare.net/merCokun1/defcon23-why-nationstatemalwaretargettelcoomercoskun-51440112
https://www.slideshare.net/merCokun1/defcon23-why-nationstatemalwaretargettelcoomercoskun-51440112
https://blog.gdatasoftware.com/blog/article/regin-an-old-but-sophisticated-cyber-espionage-toolkit-platform.html
https://blog.gdatasoftware.com/blog/article/regin-an-old-but-sophisticated-cyber-espionage-toolkit-platform.html
https://blog.gdatasoftware.com/blog/article/regin-an-old-but-sophisticated-cyber-espionage-toolkit-platform.html
https://github.com/EmergingThreats/et-luajit-scripts/blob/master/luajit.rules
https://github.com/EmergingThreats/et-luajit-scripts/blob/master/luajit.rules
https://nakedsecurity.sophos.com/2015/01/19/do-terrorists-use-spam-to-shroud-their-secrets
https://nakedsecurity.sophos.com/2015/01/19/do-terrorists-use-spam-to-shroud-their-secrets

THE JOURNAL ON CYBERCRIME & DIGITAL INVESTIGATIONS, VOL. 1, NO. 1, DEC. 2015, BOTCONF 2015 PROCEEDINGS

remember me
ride you
asian
autocad
banged
bed
bedroom
being larter
blowjob
breast
camel toe
cock
courtship
cum
delivery failure
delivery notification
delivery status notification
designer
dialost
discount
dreams

drugs
ecard
ejaculation
exposed herself
facsimile
flaccid
for health
gay
girth
greeting
hilarious
horny
hot babes
hot rod
huge
impotence
inches
invincible
jessica alba
longer
macho

make her
manhood
manliness
med
mightier
naked
orgasm
party
pleasure
porn
prada
pussy
rolex
satisfaction
sex
she will
slut
spam
supplement
teat
the person

tight
timepieces
undeliverable
viagra
vyagra
watche
xmas
weight
chicks
dirty
pharmacy
hot deals
walmart
Google Alert
Press Review
Sources Say
Russian Headlines
Wires at
Delivery Status Notification
Radio News

Fig. 14. E-Mail Filters: Blacklisted Keywords

12 Matthieu Kaczmarek, Malware Instrumentation Application to Regin Analysis

	Introduction
	Design
	Overview
	Architecture
	Remote Procedure Call

	Instrumentation
	RPC Helper
	RPC Execution Trace

	Networking
	Design
	Transport
	Protocol
	Digital Signature

	Conclusions
	Defense Perspective
	Attacker Perspective
	Counter-Intelligence Perspective

	References

